2l5h
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2l5h]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L5H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2L5H FirstGlance]. <br> | <table><tr><td colspan='2'>[[2l5h]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L5H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2L5H FirstGlance]. <br> | ||
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2l5h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l5h OCA], [https://pdbe.org/2l5h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2l5h RCSB], [https://www.ebi.ac.uk/pdbsum/2l5h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2l5h ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Hybrid , Solution NMR , X-ray solution scattering</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2l5h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l5h OCA], [https://pdbe.org/2l5h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2l5h RCSB], [https://www.ebi.ac.uk/pdbsum/2l5h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2l5h ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/PT1_ECOLI PT1_ECOLI] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).<ref>PMID:7876255</ref> | [https://www.uniprot.org/uniprot/PT1_ECOLI PT1_ECOLI] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).<ref>PMID:7876255</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN(alpha/beta) subdomain and an aspartate (Asp129) on the EIN(alpha) subdomain results in a small ( approximately 9 degrees ) reorientation of the EIN(alpha) and EIN(alpha/beta) subdomains that is in turn propagated to a larger reorientation ( approximately 26 degrees ) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations. | ||
- | |||
- | Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer.,Takayama Y, Schwieters CD, Grishaev A, Ghirlando R, Clore GM J Am Chem Soc. 2010 Dec 16. PMID:21162528<ref>PMID:21162528</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 2l5h" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Solution Structure of the H189Q mutant of the Enzyme I dimer Using Residual Dipolar Couplings and Small Angle X-Ray Scattering
|