2lmn
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2lmn]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The September 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Amyloids'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_9 10.2210/rcsb_pdb/mom_2015_9]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LMN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LMN FirstGlance]. <br> | <table><tr><td colspan='2'>[[2lmn]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The September 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Amyloids'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_9 10.2210/rcsb_pdb/mom_2015_9]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LMN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LMN FirstGlance]. <br> | ||
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2lmn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lmn OCA], [https://pdbe.org/2lmn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2lmn RCSB], [https://www.ebi.ac.uk/pdbsum/2lmn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2lmn ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solid-state NMR</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2lmn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lmn OCA], [https://pdbe.org/2lmn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2lmn RCSB], [https://www.ebi.ac.uk/pdbsum/2lmn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2lmn ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 10: | Line 11: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with Also bind GPC1 in lipid rafts.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> | [https://www.uniprot.org/uniprot/A4_HUMAN A4_HUMAN] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with Also bind GPC1 in lipid rafts.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain (By similarity).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).<ref>PMID:9168929</ref> <ref>PMID:11544248</ref> <ref>PMID:11943163</ref> <ref>PMID:19225519</ref> <ref>PMID:19901339</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | We describe a full structural model for amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), based on numerous constraints from solid state NMR and electron microscopy. This model applies specifically to fibrils with a periodically twisted morphology, with twist period equal to 120 +/- 20 nm (defined as the distance between apparent minima in fibril width in negatively stained transmission electron microscope images). The structure has threefold symmetry about the fibril growth axis, implied by mass-per-length data and the observation of a single set of (13)C NMR signals. Comparison with a previously reported model for Abeta(1-40) fibrils with a qualitatively different, striated ribbon morphology reveals the molecular basis for polymorphism. At the molecular level, the 2 Abeta(1-40) fibril morphologies differ in overall symmetry (twofold vs. threefold), the conformation of non-beta-strand segments, and certain quaternary contacts. Both morphologies contain in-register parallel beta-sheets, constructed from nearly the same beta-strand segments. Because twisted and striated ribbon morphologies are also observed for amyloid fibrils formed by other polypeptides, such as the amylin peptide associated with type 2 diabetes, these structural variations may have general implications. | ||
- | |||
- | Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils.,Paravastu AK, Leapman RD, Yau WM, Tycko R Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54. Epub 2008 Nov 17. PMID:19015532<ref>PMID:19015532</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 2lmn" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Structural Model for a 40-Residue Beta-Amyloid Fibril with Two-Fold Symmetry, Positive Stagger
|