5n1q

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:26, 1 May 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/A0A247D6X4_METTL A0A247D6X4_METTL] Component of the methyl-coenzyme M reductase (MCR) I that catalyzes the reductive cleavage of methyl-coenzyme M (CoM-S-CH3 or 2-(methylthio)ethanesulfonate) using coenzyme B (CoB or 7-mercaptoheptanoylthreonine phosphate) as reductant which results in the production of methane and the mixed heterodisulfide of CoB and CoM (CoM-S-S-CoB). This is the final step in methanogenesis.[ARBA:ARBA00002461]
[https://www.uniprot.org/uniprot/A0A247D6X4_METTL A0A247D6X4_METTL] Component of the methyl-coenzyme M reductase (MCR) I that catalyzes the reductive cleavage of methyl-coenzyme M (CoM-S-CH3 or 2-(methylthio)ethanesulfonate) using coenzyme B (CoB or 7-mercaptoheptanoylthreonine phosphate) as reductant which results in the production of methane and the mixed heterodisulfide of CoB and CoM (CoM-S-S-CoB). This is the final step in methanogenesis.[ARBA:ARBA00002461]
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The phylogenetically diverse family of methanogenic archaea universally use methyl-coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales, Methanococcales and Methanopyrales into three distinct types: (1) MCRs from Methanobacteriales, (2) MCRs from Methanobacteriales and Methanococcales and (3) MCRs from Methanococcales. The first and second types contain MCR isoenzyme I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated as MCR type I and type II and accordingly, the third one was designated as MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus As predicted, the three MCR types revealed highly similar overall structures and a virtually identical active site architecture reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active site funnel. In addition, the C-terminal end of the gamma-subunit is prolonged by an extra helix after helix gamma8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II and III share most of the post-translational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit alpha of M. formicicus a 6-hydroxy-tryptophan, which has been, so far, only found in the alpha-amanitin toxin peptide but not in proteins.IMPORTANCE Methyl-coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCR suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses only revealed substantial differences between the three types in the peripheral region. Identified subtle modifications and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new post-translational modification that was, so far, only found in the alpha-amanitin toxin.
 
- 
-
Phylogenetic and structural comparisons of the three types of methyl-coenzyme M reductase from Methanococcales and Methanobacteriales.,Wagner T, Wegner CE, Kahnt J, Ermler U, Shima S J Bacteriol. 2017 May 30. pii: JB.00197-17. doi: 10.1128/JB.00197-17. PMID:28559298<ref>PMID:28559298</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 5n1q" style="background-color:#fffaf0;"></div>
 
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

METHYL-COENZYME M REDUCTASE III FROM METHANOTHERMOCOCCUS THERMOLITHOTROPHICUS AT 1.9 A RESOLUTION

PDB ID 5n1q

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools