|
|
Line 1: |
Line 1: |
| | | |
| ==SSNMR Structure of the Human RIP1/RIP3 Necrosome== | | ==SSNMR Structure of the Human RIP1/RIP3 Necrosome== |
- | <StructureSection load='5v7z' size='340' side='right'caption='[[5v7z]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | + | <StructureSection load='5v7z' size='340' side='right'caption='[[5v7z]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5v7z]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V7Z OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5V7Z FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5v7z]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V7Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5V7Z FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5v7z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v7z OCA], [http://pdbe.org/5v7z PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5v7z RCSB], [http://www.ebi.ac.uk/pdbsum/5v7z PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5v7z ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solid-state NMR</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5v7z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v7z OCA], [https://pdbe.org/5v7z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5v7z RCSB], [https://www.ebi.ac.uk/pdbsum/5v7z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5v7z ProSAT]</span></td></tr> |
| </table> | | </table> |
- | <div style="background-color:#fffaf0;">
| + | == Function == |
- | == Publication Abstract from PubMed == | + | [https://www.uniprot.org/uniprot/RIPK3_HUMAN RIPK3_HUMAN] Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production.<ref>PMID:19498109</ref> <ref>PMID:19524512</ref> <ref>PMID:19524513</ref> <ref>PMID:22265413</ref> <ref>PMID:22265414</ref> <ref>PMID:22421439</ref> |
- | The RIPK1-RIPK3 necrosome is an amyloid signaling complex that initiates TNF-induced necroptosis, serving in human immune defense, cancer, and neurodegenerative diseases. RIPK1 and RIPK3 associate through their RIP homotypic interaction motifs with consensus sequences IQIG (RIPK1) and VQVG (RIPK3). Using solid-state nuclear magnetic resonance, we determined the high-resolution structure of the RIPK1-RIPK3 core. RIPK1 and RIPK3 alternately stack (RIPK1, RIPK3, RIPK1, RIPK3, etc.) to form heterotypic beta sheets. Two such beta sheets bind together along a compact hydrophobic interface featuring an unusual ladder of alternating Ser (from RIPK1) and Cys (from RIPK3). The crystal structure of a four-residue RIPK3 consensus sequence is consistent with the architecture determined by NMR. The RIPK1-RIPK3 core is the first detailed structure of a hetero-amyloid and provides a potential explanation for the specificity of hetero- over homo-amyloid formation and a structural basis for understanding the mechanisms of signal transduction.
| + | |
- | | + | |
- | The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex.,Mompean M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE Cell. 2018 May 17;173(5):1244-1253.e10. doi: 10.1016/j.cell.2018.03.032. Epub, 2018 Apr 19. PMID:29681455<ref>PMID:29681455</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div> | + | |
- | <div class="pdbe-citations 5v7z" style="background-color:#fffaf0;"></div> | + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Laage, S]] | + | [[Category: Laage S]] |
- | [[Category: Li, J]] | + | [[Category: Li J]] |
- | [[Category: Li, W]] | + | [[Category: Li W]] |
- | [[Category: McDermott, A E]] | + | [[Category: McDermott AE]] |
- | [[Category: Mompean, M]] | + | [[Category: Mompean M]] |
- | [[Category: Siemer, A B]] | + | [[Category: Siemer AB]] |
- | [[Category: Wu, H]] | + | [[Category: Wu H]] |
- | [[Category: Human functional amyloid]]
| + | |
- | [[Category: Signaling complex]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
RIPK3_HUMAN Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production.[1] [2] [3] [4] [5] [6]
References
- ↑ Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009 Jul 17;325(5938):332-6. doi: 10.1126/science.1172308. Epub 2009 Jun, 4. PMID:19498109 doi:http://dx.doi.org/10.1126/science.1172308
- ↑ He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009 Jun 12;137(6):1100-11. doi: 10.1016/j.cell.2009.05.021. PMID:19524512 doi:10.1016/j.cell.2009.05.021
- ↑ Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009 Jun 12;137(6):1112-23. doi: 10.1016/j.cell.2009.05.037. PMID:19524513 doi:10.1016/j.cell.2009.05.037
- ↑ Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012 Jan 20;148(1-2):213-27. doi: 10.1016/j.cell.2011.11.031. PMID:22265413 doi:http://dx.doi.org/10.1016/j.cell.2011.11.031
- ↑ Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012 Jan 20;148(1-2):228-43. doi: 10.1016/j.cell.2011.11.030. PMID:22265414 doi:http://dx.doi.org/10.1016/j.cell.2011.11.030
- ↑ Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7. doi:, 10.1073/pnas.1200012109. Epub 2012 Mar 15. PMID:22421439 doi:http://dx.doi.org/10.1073/pnas.1200012109
|