1s24
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Rubredoxin domain II from Pseudomonas oleovorans== | ==Rubredoxin domain II from Pseudomonas oleovorans== | ||
- | <StructureSection load='1s24' size='340' side='right'caption='[[1s24 | + | <StructureSection load='1s24' size='340' side='right'caption='[[1s24]]' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1s24]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[1s24]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_oleovorans Pseudomonas oleovorans]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S24 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S24 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene></td></tr> |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s24 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s24 OCA], [https://pdbe.org/1s24 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s24 RCSB], [https://www.ebi.ac.uk/pdbsum/1s24 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s24 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s24 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s24 OCA], [https://pdbe.org/1s24 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s24 RCSB], [https://www.ebi.ac.uk/pdbsum/1s24 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s24 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/RUBR2_PSEOL RUBR2_PSEOL] Involved in the hydrocarbon hydroxylating system, which transfers electrons from NADH to rubredoxin reductase and then through rubredoxin to alkane 1 monooxygenase.<ref>PMID:4295540</ref> <ref>PMID:11171083</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s24 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s24 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein. | ||
- | + | ==See Also== | |
- | + | *[[Rubredoxin 3D structures|Rubredoxin 3D structures]] | |
- | + | *[[Rubredoxin PDB structures|Rubredoxin PDB structures]] | |
- | + | ||
- | + | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 34: | Line 29: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Grossmann | + | [[Category: Pseudomonas oleovorans]] |
- | [[Category: Lian | + | [[Category: Grossmann JG]] |
- | [[Category: Perry | + | [[Category: Lian LY]] |
- | [[Category: Scrutton | + | [[Category: Perry A]] |
- | [[Category: Tambyrajah | + | [[Category: Scrutton NS]] |
- | + | [[Category: Tambyrajah W]] | |
- | + |
Revision as of 08:28, 1 May 2024
Rubredoxin domain II from Pseudomonas oleovorans
|