1sr2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Solution structure of the Escherichia coli YojN Histidine-Phosphotransferase (HPt) domain==
==Solution structure of the Escherichia coli YojN Histidine-Phosphotransferase (HPt) domain==
-
<StructureSection load='1sr2' size='340' side='right'caption='[[1sr2]], [[NMR_Ensembles_of_Models | 25 NMR models]]' scene=''>
+
<StructureSection load='1sr2' size='340' side='right'caption='[[1sr2]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1sr2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SR2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SR2 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1sr2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SR2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SR2 FirstGlance]. <br>
-
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">YOJN, B2216 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sr2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sr2 OCA], [https://pdbe.org/1sr2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sr2 RCSB], [https://www.ebi.ac.uk/pdbsum/1sr2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sr2 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sr2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sr2 OCA], [https://pdbe.org/1sr2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sr2 RCSB], [https://www.ebi.ac.uk/pdbsum/1sr2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sr2 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/RCSD_ECOLI RCSD_ECOLI]] Component of the Rcs signaling system, which controls transcription of numerous genes. RcsD is a phosphotransfer intermediate between the sensor kinase RcsC and the response regulator RcsB. It acquires a phosphoryl group from RcsC and transfers it to RcsB. The system controls expression of genes involved in colanic acid capsule synthesis, biofilm formation and cell division.[HAMAP-Rule:MF_00980]<ref>PMID:10564486</ref> <ref>PMID:11309126</ref> <ref>PMID:11758943</ref> <ref>PMID:13129944</ref> <ref>PMID:14651646</ref>
+
[https://www.uniprot.org/uniprot/RCSD_ECOLI RCSD_ECOLI] Component of the Rcs signaling system, which controls transcription of numerous genes. RcsD is a phosphotransfer intermediate between the sensor kinase RcsC and the response regulator RcsB. It acquires a phosphoryl group from RcsC and transfers it to RcsB. The system controls expression of genes involved in colanic acid capsule synthesis, biofilm formation and cell division.[HAMAP-Rule:MF_00980]<ref>PMID:10564486</ref> <ref>PMID:11309126</ref> <ref>PMID:11758943</ref> <ref>PMID:13129944</ref> <ref>PMID:14651646</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sr2 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sr2 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The Rcs signaling system in Escherichia coli controls a variety of physiological functions, including capsule synthesis, cell division and motility. The activity of the central regulator RcsB is modulated by phosphorylation through the sensor kinases YojN and RcsC, with the YojN histidine phosphotransferase (HPt) domain representing the catalytic unit that coordinates the potentially reversible phosphotransfer reaction between the receiver domains of the RcsB and RcsC proteins. Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the YojN-HPt domain and to map the interaction with its two cognate receiver domains. The solution structure of YojN-HPt exhibits a well-ordered and rigid protein core consisting of the five helices alphaI to alphaV. The helices alphaII to alphaV form a four-helix bundle signature motif common to proteins of similar function, and helix alphaI forms a cap on top of the bundle. The helix alphaII is separated by a proline induced kink into two parts with different orientations and dynamic behavior that is potentially important for complex formation with other proteins. The N-terminal part of YojN-HPt spanning the first 26 amino acid residues seems to contain neither a regular secondary structure nor a stable tertiary structure and is disordered in solution. The identified YojN-HPt recognition sites for the regulator RcsB and for the isolated receiver domain of the RcsC kinase largely overlap in defined regions of the helices alphaII and alphaIII, but show significant differences. Using the residues with the largest chemical shift changes obtained from titration experiments, we observed a dissociation constant of approximately 200microM for YojN-HPt/RcsC-PR and of 40microM for YojN-HPt/RcsB complexes. Our data indicate the presence of a recognition area in close vicinity to the active-site histidine residue of HPt domains as a determinant of specificity in signal-transduction pathways.
 
- 
-
Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains.,Rogov VV, Bernhard F, Lohr F, Dotsch V J Mol Biol. 2004 Oct 29;343(4):1035-48. PMID:15476819<ref>PMID:15476819</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1sr2" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Bacillus coli migula 1895]]
+
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Bernhard, F]]
+
[[Category: Bernhard F]]
-
[[Category: Doetsch, V]]
+
[[Category: Doetsch V]]
-
[[Category: Loehr, F]]
+
[[Category: Loehr F]]
-
[[Category: Rogov, V V]]
+
[[Category: Rogov VV]]
-
[[Category: Four-helical bundle]]
+
-
[[Category: Transferase]]
+

Revision as of 08:34, 1 May 2024

Solution structure of the Escherichia coli YojN Histidine-Phosphotransferase (HPt) domain

PDB ID 1sr2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools