1t3w
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1t3w' size='340' side='right'caption='[[1t3w]], [[Resolution|resolution]] 2.80Å' scene=''> | <StructureSection load='1t3w' size='340' side='right'caption='[[1t3w]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1t3w]] is a 2 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1t3w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1T3W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1T3W FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1t3w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1t3w OCA], [https://pdbe.org/1t3w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1t3w RCSB], [https://www.ebi.ac.uk/pdbsum/1t3w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1t3w ProSAT]</span></td></tr> | |
- | + | ||
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/DNAG_ECOLI DNAG_ECOLI] RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication.[HAMAP-Rule:MF_00974]<ref>PMID:1511009</ref> <ref>PMID:340457</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 22: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1t3w ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1t3w ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks. | ||
- | |||
- | Crystal and solution structures of the helicase-binding domain of Escherichia coli primase.,Oakley AJ, Loscha KV, Schaeffer PM, Liepinsh E, Pintacuda G, Wilce MC, Otting G, Dixon NE J Biol Chem. 2005 Mar 25;280(12):11495-504. Epub 2005 Jan 12. PMID:15649896<ref>PMID:15649896</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1t3w" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 38: | Line 27: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Dixon | + | [[Category: Dixon NE]] |
- | [[Category: Liepinsh | + | [[Category: Liepinsh E]] |
- | [[Category: Loscha | + | [[Category: Loscha KV]] |
- | [[Category: Oakley | + | [[Category: Oakley AJ]] |
- | [[Category: Otting | + | [[Category: Otting G]] |
- | [[Category: Schaeffer | + | [[Category: Schaeffer PM]] |
- | [[Category: Wilce | + | [[Category: Wilce MCJ]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Revision as of 08:38, 1 May 2024
Crystal Structure of the E.coli DnaG C-terminal domain (residues 434 to 581)
|