1gq9

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:50, 9 May 2024) (edit) (undo)
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gq9 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gq9 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The activation of the sugar 2-keto-3-deoxy-manno-octonic acid (Kdo) is catalyzed by CMP-Kdo synthetase (EC 2.7.7.38) and results in a monophosphate diester with CMP. The enzyme is a pharmaceutical target because CMP-Kdo is required for the biosynthesis of lipopolysaccharides that are vital for Gram-negative bacteria. We have established the structures of an enzyme complex with the educt CTP and of a complex with the product CMP-Kdo by X-ray diffraction analyses at 100 K, both at 2.6 A resolution. The N-terminal domains of the dimeric enzyme bind CTP in a peculiar nucleotide-binding fold with the beta- and gamma-phosphates located at the so-called "PP-loop", whereas the C-terminal domains participate in Kdo binding and in the dimer interface. The unstable nucleotide-sugar CMP-Kdo was produced in a crystal and stabilized by freezing to 100 K. Its formation is accompanied by an induced fit involving mainchain displacements in the 2 A range. The observed binding conformations together with the amino acid conservation pattern during evolution and the putative location of the required Mg(2+) ion suggest a reaction pathway. The enzyme is structurally homologous to the CMP-N-acetylneuraminic acid synthetases in all parts except for the dimer interface. Moreover, the chainfold and the substrate-binding positions resemble those of other enzymes processing nucleotide sugars.
 +
 +
Catalytic mechanism of CMP:2-keto-3-deoxy-manno-octonic acid synthetase as derived from complexes with reaction educt and product.,Jelakovic S, Schulz GE Biochemistry. 2002 Jan 29;41(4):1174-81. PMID:11802716<ref>PMID:11802716</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1gq9" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

THE STRUCTURE OF CMP:2-KETO-3-DEOXY-MANNO-OCTONIC ACID SYNTHETASE COMPLEXED WITH CTP at 100K

PDB ID 1gq9

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools