|
|
Line 3: |
Line 3: |
| <StructureSection load='1wmo' size='340' side='right'caption='[[1wmo]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='1wmo' size='340' side='right'caption='[[1wmo]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1wmo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"achromobacter_globiformis"_(conn_1928)_bergey_et_al._1930 "achromobacter globiformis" (conn 1928) bergey et al. 1930]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WMO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1wmo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arthrobacter_globiformis Arthrobacter globiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WMO FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPQ:5-(2-CARBOXY-2-AMINOETHYL)-2-HYDROXY-1,4-BENZOQUINONE'>TPQ</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=TPQ:5-(2-CARBOXY-2-AMINOETHYL)-2-HYDROXY-1,4-BENZOQUINONE'>TPQ</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1iu7|1iu7]], [[1iqx|1iqx]], [[1iqy|1iqy]], [[1wmn|1wmn]], [[1wmp|1wmp]]</div></td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Oxidoreductase Oxidoreductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.4.3.21 and 1.4.3.22 1.4.3.21 and 1.4.3.22] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wmo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wmo OCA], [https://pdbe.org/1wmo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wmo RCSB], [https://www.ebi.ac.uk/pdbsum/1wmo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wmo ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wmo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wmo OCA], [https://pdbe.org/1wmo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wmo RCSB], [https://www.ebi.ac.uk/pdbsum/1wmo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wmo ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PAOX_ARTGO PAOX_ARTGO] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Arthrobacter globiformis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Oxidoreductase]]
| + | [[Category: Chiu YC]] |
- | [[Category: Chiu, Y C]] | + | [[Category: Hirota S]] |
- | [[Category: Hirota, S]] | + | [[Category: Kim M]] |
- | [[Category: Kim, M]] | + | [[Category: Kishishita S]] |
- | [[Category: Kishishita, S]] | + | [[Category: Kuroda S]] |
- | [[Category: Kuroda, S]] | + | [[Category: Murakawa T]] |
- | [[Category: Murakawa, T]] | + | [[Category: Okajima T]] |
- | [[Category: Okajima, T]] | + | [[Category: Tanizawa K]] |
- | [[Category: Tanizawa, K]] | + | [[Category: Yamaguchi H]] |
- | [[Category: Yamaguchi, H]] | + | |
- | [[Category: Amine oxidase]]
| + | |
- | [[Category: Biogenesis]]
| + | |
- | [[Category: Copper]]
| + | |
- | [[Category: Nickel]]
| + | |
- | [[Category: Topaquinone]]
| + | |
- | [[Category: Tpq]]
| + | |
| Structural highlights
Function
PAOX_ARTGO
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently. Although these noncupric metal ions could not initiate TPQ formation under the atmospheric conditions, we observed slow spectral changes in the enzyme bound with Co2+ or Ni2+ ion under the dioxygen-saturating conditions. Resonance Raman spectroscopy and titration with phenylhydrazine provided unambiguous evidence for TPQ formation by Co2+ and Ni2+ ions. Steady-state kinetic analysis showed that the enzymes activated by Co2+ and Ni2+ ions were indistinguishable from the corresponding metal-substituted enzymes prepared from the native copper enzyme (Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) J. Am. Chem. Soc. 125, 1041-1055). X-ray crystallographic analysis has also revealed structural identity of the active sites of Co- and Ni-activated enzymes with Cu-enzyme. Thus Cu2+ ion is not the sole metal ion assisting TPQ formation. Co2+ and Ni2+ ions are also capable of forming TPQ, though much less efficiently than Cu2+.
Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase.,Okajima T, Kishishita S, Chiu YC, Murakawa T, Kim M, Yamaguchi H, Hirota S, Kuroda S, Tanizawa K Biochemistry. 2005 Sep 13;44(36):12041-8. PMID:16142901[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Okajima T, Kishishita S, Chiu YC, Murakawa T, Kim M, Yamaguchi H, Hirota S, Kuroda S, Tanizawa K. Reinvestigation of metal ion specificity for quinone cofactor biogenesis in bacterial copper amine oxidase. Biochemistry. 2005 Sep 13;44(36):12041-8. PMID:16142901 doi:10.1021/bi051070r
|