1nin
From Proteopedia
(Difference between revisions)
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nin ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1nin ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v.PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry structures were optimized by simulated annealing and restrained energy minimization. The average rms deviation from the mean structure for the 20 structures with the lowest total energy is 1.25 A for the backbone atoms and 1.75 A for all heavy atoms. Overall, the global tertiary fold of A.v.PCu resembles those of other plastocyanins which have been structurally characterized by X-ray diffraction and NMR methods. This holds even though A.v.PCu is longer than any other known plastocyanins, contains far less invariant amino acid residues, and has an overall charge that differs considerably from those of other plastocyanins (+1 vs -9 +/- 1 at pH > or = 7). The most striking feature of the A.v. PCu structure is the absence of the beta-turn, formed at the remote site by residues (58)-(61) in most higher plant plastocyanins. The displacement caused by the absence of this turn is compensated for by an extension of the small helix [from Ala53(51) to Ser60(58) in A.v.PCu] found in other plastocyanins. Moreover, the extra residues of A.v.PCu from Pro77 to Asp79 form an appended loop. These two features allow A.v.PCu to retain almost the same global fold as observed in other plastocyanins. From a comparison with the structures of other plastocyanins it is concluded that the lack of negatively charged residues at the remote site, rather than the specific structure of A.v.PCu, is the main reason for the failure of the remote site of this plastocyanin to function as a significant electron transfer site. | ||
+ | |||
+ | Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis.,Badsberg U, Jorgensen AM, Gesmar H, Led JJ, Hammerstad JM, Jespersen LL, Ulstrup J Biochemistry. 1996 Jun 4;35(22):7021-31. PMID:8679527<ref>PMID:8679527</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1nin" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Plastocyanin 3D structures|Plastocyanin 3D structures]] | *[[Plastocyanin 3D structures|Plastocyanin 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
PLASTOCYANIN FROM ANABAENA VARIABILIS, NMR, 20 STRUCTURES
|