1pij

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:59, 22 May 2024) (edit) (undo)
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pij ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pij ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The three-dimensional structure in solution of reduced recombinant high-potential iron-sulfur protein iso-I from Ectothiorhodospira halophila was determined using 948 relevant interproton NOEs out of the 1246 observed NOEs. The determination was accomplished using the XEASY program for spectral analysis and the distance geometry (DG) program DIANA for generation of the structure as described by Wuthrich [Wuthrich, K. (1989) Acc. Chem. Res. 22, 36-44]. The FeS cluster was simulated using an amino acid residue constructed for the present work from a cysteinyl residue with an iron and a sulfur atom attached to the terminal thiol. The family of structures obtained from distance geometry were subjected to energy minimization and molecular dynamics simulations using previously defined force field parameters. The quality of these structures at each stage of the refinement process is discussed with respect to the dihedral angle order parameter and the root-mean-square deviation of the atomic coordinates. The latter values for the backbone atoms vary from 67 pm for the distance-geometry structures to 60 pm for the energy-minimized structures to 51 pm for the structures subjected to restrained molecular dynamics. Finally, the structure in best agreement with the NOE constraints has been further treated with extensive restrained molecular dynamics in water. The solution structure is well defined and is very similar to the available X-ray structure. We do not know of any previous determination of the structure of a paramagnetic protein in solution by NMR. The effect of paramagnetism on the quality of the structure determination is discussed.
 +
 +
The three-dimensional structure in solution of the paramagnetic high-potential iron-sulfur protein I from Ectothiorhodospira halophila through nuclear magnetic resonance.,Banci L, Bertini I, Eltis LD, Felli IC, Kastrau DH, Luchinat C, Piccioli M, Pierattelli R, Smith M Eur J Biochem. 1994 Oct 15;225(2):715-25. PMID:7957187<ref>PMID:7957187</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1pij" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

THE THREE DIMENSIONAL STRUCTURE OF THE PARAMAGNETIC PROTEIN HIPIP I FROM E.HALOPHILA THROUGH NUCLEAR MAGNETIC RESONANCE

PDB ID 1pij

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools