| Structural highlights
Disease
FINC_HUMAN Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:601894; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.[1]
Function
FINC_HUMAN Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.[2] [3] [4] [5] Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.[6] [7] [8] [9]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Anastellin is a carboxy-terminal fragment of the first FN3 domain from human fibronectin. It is capable of polymerizing fibronectin in vitro, and it displays anti-tumor, anti-metastatic and anti-angiogenic properties in vivo. We have determined the structure of anastellin using nuclear magnetic resonance spectroscopy and identified residues critical for its activity. Anastellin exhibits dynamic fluctuations and conformational exchange in solution. Its overall topology is very similar to the corresponding region of full-length FN3 domains. However, its hydrophobic core becomes solvent-accessible and some of its beta-strands lose their protection against hydrogen bonding to beta-strands from other molecules. These features seem to be relevant for the fibronectin polymerization activity of anastellin and resemble the characteristics of amyloid fibril precursors. We suggest that this analogy is not random and may reflect similarities between fibronectin and amyloid fibril formation.
Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors.,Briknarova K, Akerman ME, Hoyt DW, Ruoslahti E, Ely KR J Mol Biol. 2003 Sep 5;332(1):205-15. PMID:12946358[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2538-43. Epub 2008 Feb 11. PMID:18268355 doi:0707730105
- ↑ Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
- ↑ Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
- ↑ Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
- ↑ You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003
- ↑ Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
- ↑ Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
- ↑ Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
- ↑ You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003
- ↑ Briknarova K, Akerman ME, Hoyt DW, Ruoslahti E, Ely KR. Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J Mol Biol. 2003 Sep 5;332(1):205-15. PMID:12946358
|