1rrb
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rrb ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rrb ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The Ras protein and its homolog, Rap1A, have an identical "effector region" (residues 32-40) preceded by Asp30-Glu31 and Glu30-Lys31, respectively. In the complex of the "Ras-like" E30D/K31E mutant Rap1A with the Ras-binding domain (RBD), residues 51-131 of Raf-1, Glu31 in Rap1A forms a tight salt bridge with Lys84 in Raf-1. However, we have recently found that Raf-1 RBD binding of Ras is indeed reduced by the E31K mutation, but is not affected by the E31A mutation. Here, the "Rap1A-like" D30E/E31K mutant of Ras was prepared and shown to bind the Raf-1 RBD less strongly than wild-type Ras, but slightly more tightly than the E31K mutant. The backbone 1H, 13C, and 15N magnetic resonances of the Raf-1 RBD were assigned in complexes with the wild-type and D30E/E31K mutant Ras proteins in the guanosine 5'-O-(beta,gamma-imidotriphosphate)-bound form. The Lys84 residue in the Raf-1 RBD exhibited a large change in chemical shift upon binding wild-type Ras, suggesting that Lys84 interacts with wild-type Ras. The D30E/E31K mutant of Ras caused nearly the same perturbations in Raf-1 chemical shifts, including that of Lys84. We hypothesized that Glu31 in Ras may not be the major salt bridge partner of Lys84 in Raf-1. A molecular dynamics simulation of a model structure of the Raf-1 RBD.Ras.GTP complex suggested that Lys84 in Raf-1 might instead form a tight salt bridge with Asp33 in Ras. Consistent with this, the D33A mutation in Ras greatly reduced its Raf-I RBD binding activity. We conclude that the major salt bridge partner of Lys84 in Raf-1 may be Asp33 in Ras. | ||
+ | |||
+ | Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins.,Terada T, Ito Y, Shirouzu M, Tateno M, Hashimoto K, Kigawa T, Ebisuzaki T, Takio K, Shibata T, Yokoyama S, Smith BO, Laue ED, Cooper JA J Mol Biol. 1999 Feb 12;286(1):219-32. PMID:9931261<ref>PMID:9931261</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1rrb" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
THE RAS-BINDING DOMAIN OF RAF-1 FROM RAT, NMR, 1 STRUCTURE
|
Categories: Large Structures | Rattus norvegicus | Cooper JA | Ebisuzaki T | Hashimoto K | Ito Y | Kigawa T | Laue ED | Shibata T | Shirouzu M | Smith BO | Takio K | Tateno M | Terada T | Yokoyama S