2jtw

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (19:05, 29 May 2024) (edit) (undo)
 
Line 8: Line 8:
</table>
</table>
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/VPP1_YEAST VPP1_YEAST] Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:1491220, PubMed:8798414, PubMed:11278748). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments (PubMed:1491220, PubMed:11278748). Is present only in vacuolar V-ATPase complexes; enzymes containing this subunit have a 4-fold higher ratio of proton transport to ATP hydrolysis than complexes containing the Golgi/endosomal isoform and undergo reversible dissociation of V1 and V0 in response to glucose depletion (PubMed:8798414, PubMed:11278748).<ref>PMID:11278748</ref> <ref>PMID:1491220</ref> <ref>PMID:8798414</ref>
+
[https://www.uniprot.org/uniprot/VPP1_YEAST VPP1_YEAST] Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:11278748, PubMed:1491220, PubMed:8798414). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments (PubMed:11278748, PubMed:1491220). Is present only in vacuolar V-ATPase complexes; enzymes containing this subunit have a 4-fold higher ratio of proton transport to ATP hydrolysis than complexes containing the Golgi/endosomal isoform and undergo reversible dissociation of V1 and V0 in response to glucose depletion (PubMed:11278748, PubMed:8798414).<ref>PMID:11278748</ref> <ref>PMID:1491220</ref> <ref>PMID:8798414</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Current revision

Solution structure of TM7 bound to DPC micelles

PDB ID 2jtw

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools