6lvf
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | ==Cryo-EM structure of | + | ==Cryo-EM structure of a bacterial membrane protein== |
<StructureSection load='6lvf' size='340' side='right'caption='[[6lvf]], [[Resolution|resolution]] 3.70Å' scene=''> | <StructureSection load='6lvf' size='340' side='right'caption='[[6lvf]], [[Resolution|resolution]] 3.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6LVF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6LVF FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EV9:[(2~{R})-3-[[(2~{S})-3-[(2~{S})-2,6-bis(azanyl)hexanoyl]oxy-2-oxidanyl-propoxy]-oxidanyl-phosphoryl]oxy-2-hexadecanoyloxy-propyl]+hexadecanoate'>EV9</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=PGT:(1S)-2-{[{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+STEARATE'>PGT</scene> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.7Å</td></tr> |
| - | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EV9:[(2~{R})-3-[[(2~{S})-3-[(2~{S})-2,6-bis(azanyl)hexanoyl]oxy-2-oxidanyl-propoxy]-oxidanyl-phosphoryl]oxy-2-hexadecanoyloxy-propyl]+hexadecanoate'>EV9</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=PGT:(1S)-2-{[{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+STEARATE'>PGT</scene></td></tr> | |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6lvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6lvf OCA], [https://pdbe.org/6lvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6lvf RCSB], [https://www.ebi.ac.uk/pdbsum/6lvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6lvf ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6lvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6lvf OCA], [https://pdbe.org/6lvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6lvf RCSB], [https://www.ebi.ac.uk/pdbsum/6lvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6lvf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | As a large family of membrane proteins crucial for bacterial physiology and virulence, the Multiple Peptide Resistance Factors (MprFs) utilize two separate domains to synthesize and translocate aminoacyl phospholipids to the outer leaflets of bacterial membranes. The function of MprFs enables Staphylococcus aureus and other pathogenic bacteria to acquire resistance to daptomycin and cationic antimicrobial peptides. Here we present cryo-electron microscopy structures of MprF homodimer from Rhizobium tropici (RtMprF) at two different states in complex with lysyl-phosphatidylglycerol (LysPG). RtMprF contains a membrane-embedded lipid-flippase domain with two deep cavities opening toward the inner and outer leaflets of the membrane respectively. Intriguingly, a hook-shaped LysPG molecule is trapped inside the inner cavity with its head group bent toward the outer cavity which hosts a second phospholipid-binding site. Moreover, RtMprF exhibits multiple conformational states with the synthase domain adopting distinct positions relative to the flippase domain. Our results provide a detailed framework for understanding the mechanisms of MprF-mediated modification and translocation of phospholipids. | ||
| - | |||
| - | Phospholipid translocation captured in a bifunctional membrane protein MprF.,Song D, Jiao H, Liu Z Nat Commun. 2021 May 18;12(1):2927. doi: 10.1038/s41467-021-23248-z. PMID:34006869<ref>PMID:34006869</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 6lvf" style="background-color:#fffaf0;"></div> | ||
| - | == References == | ||
| - | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
| - | + | [[Category: Jiao HZ]] | |
| - | [[Category: Jiao | + | [[Category: Liu ZF]] |
| - | [[Category: Liu | + | [[Category: Song DF]] |
| - | [[Category: Song | + | |
| - | + | ||
| - | + | ||
Current revision
Cryo-EM structure of a bacterial membrane protein
| |||||||||||
