1bdo
From Proteopedia
(Difference between revisions)
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bdo ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bdo ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Acetyl-coenzyme A carboxylase catalyzes the first committed step of fatty acid biosynthesis. Universally, this reaction involves three functional components all related to a carboxybiotinyl intermediate. A biotinyl domain shuttles its covalently attached biotin prosthetic group between the active sites of a biotin carboxylase and a carboxyl transferase. In Escherichia coli, the three components reside in separate subunits: a biotinyl domain is the functional portion of one of these, biotin carboxy carrier protein (BCCP). RESULTS: We have expressed natural and selenomethionyl (Se-met) BCCP from E. coli as biotinylated recombinant proteins, proteolyzed them with subtilisin Carlsberg to produce the biotinyl domains BCCP and Se-met BCCPsc, determined the crystal structure of Se-met BCCPsc using a modified version of the multiwavelength anomalous diffraction (MAD) phasing protocol, and refined the structure for the natural BCCPsc at 1.8 A resolution. The structure may be described as a capped beta sandwich with quasi-dyad symmetry. Each half contains a characteristic hammerhead motif. The biotinylated lysin is located at a hairpin beta turn which connects the two symmetric halves of the molecule, and its biotinyl group interacts with a non-symmetric protrusion from the core. CONCLUSIONS: This first crystal structure of a biotinyl domain helps to unravel the central role of such domains in reactions catalyzed by biotin-dependent carboxylases. The hammerhead structure observed twice in BCCPsc may be regarded as the basic structural motif of biotinyl and lipoyl domains of a superfamily of enzymes. The new MAD phasing techniques developed in the course of determining this structure enhance the power of the MAD method. | ||
+ | |||
+ | Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.,Athappilly FK, Hendrickson WA Structure. 1995 Dec 15;3(12):1407-19. PMID:8747466<ref>PMID:8747466</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1bdo" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Acetyl-CoA carboxylase|Acetyl-CoA carboxylase]] | *[[Acetyl-CoA carboxylase|Acetyl-CoA carboxylase]] | ||
*[[Acetyl-CoA carboxylase 3D structures|Acetyl-CoA carboxylase 3D structures]] | *[[Acetyl-CoA carboxylase 3D structures|Acetyl-CoA carboxylase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 05:25, 5 June 2024
STRUCTURE OF THE BIOTINYL DOMAIN OF ACETYL-COENZYME A CARBOXYLASE DETERMINED BY MAD PHASING
|