1psc
From Proteopedia
(Difference between revisions)
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1psc ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1psc ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Phosphotriesterase, as isolated from Pseudomonas diminuta, is capable of detoxifying widely used pesticides such as paraoxon and parathion and various mammalian acetylcholinesterase inhibitors. The enzyme requires a binuclear metal center for activity. Recently, the three-dimensional structure of the apoenzyme was solved (Benning et al., 1994) and shown to consist of an alpha/beta-barrel. Here we describe the three-dimensional structure of the holoenzyme, reconstituted with cadmium, as determined by X-ray crystallographic analysis to 2.0-A resolution. Crystals employed in the investigation belonged to the space group C2 with unit cell dimensions of a = 129.5 A, b = 91.4 A, c = 69.4 A, beta = 91.9 degrees, and two subunits in the asymmetric unit. There are significant differences in the three-dimensional architecture of the apo and holo forms of the enzyme such that their alpha-carbon positions superimpose with a root-mean-square deviation of 3.4 A. The binuclear metal center is located at the C-terminus of the beta-barrel with the cadmiums separated by 3.8 A. There are two bridging ligands to the metals: a water molecule (or possibly a hydroxide ion) and a carbamylated lysine residue (Lys 169). The more buried cadmium is surrounded by His 55, His 57, Lys 169, Asp 301, and the bridging water in a trigonal bipyramidal arrangement. The second metal is coordinated in a distorted octahedral geometry by His 201, His 230, Lys 169, the bridging water molecule, and two additional solvents. | ||
+ | |||
+ | Three-dimensional structure of the binuclear metal center of phosphotriesterase.,Benning MM, Kuo JM, Raushel FM, Holden HM Biochemistry. 1995 Jun 27;34(25):7973-8. PMID:7794910<ref>PMID:7794910</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1psc" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Phosphotriesterase 3D structures|Phosphotriesterase 3D structures]] | *[[Phosphotriesterase 3D structures|Phosphotriesterase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA
|