7ssw
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | ==== | + | ==Late translocation intermediate with EF-G dissociated (Structure VI)== |
- | <StructureSection load='7ssw' size='340' side='right'caption='[[7ssw]]' scene=''> | + | <StructureSection load='7ssw' size='340' side='right'caption='[[7ssw]], [[Resolution|resolution]] 3.80Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7ssw]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SSW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SSW FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ssw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ssw OCA], [https://pdbe.org/7ssw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ssw RCSB], [https://www.ebi.ac.uk/pdbsum/7ssw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ssw ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.8Å</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ssw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ssw OCA], [https://pdbe.org/7ssw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ssw RCSB], [https://www.ebi.ac.uk/pdbsum/7ssw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ssw ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RL14_ECOLI RL14_ECOLI] This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8.<ref>PMID:22829778</ref> Can also interact with RsfA, in this case bridge B8 probably cannot form, and the 30S and 50S ribosomal subunits do not associate, which represses translation.<ref>PMID:22829778</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome*EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 A. An additional 4-A translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation. | ||
+ | |||
+ | Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP.,Carbone CE, Loveland AB, Gamper HB Jr, Hou YM, Demo G, Korostelev AA Nat Commun. 2021 Dec 13;12(1):7236. doi: 10.1038/s41467-021-27415-0. PMID:34903725<ref>PMID:34903725</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7ssw" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Escherichia coli K-12]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: | + | [[Category: Carbone CE]] |
+ | [[Category: Korostelev AA]] |
Current revision
Late translocation intermediate with EF-G dissociated (Structure VI)
|