8dnp
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8dnp]] is a 24 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DNP FirstGlance]. <br> | <table><tr><td colspan='2'>[[8dnp]] is a 24 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DNP FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE:FE+(III)+ION'>FE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.69Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE:FE+(III)+ION'>FE</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dnp OCA], [https://pdbe.org/8dnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dnp RCSB], [https://www.ebi.ac.uk/pdbsum/8dnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dnp ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dnp OCA], [https://pdbe.org/8dnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dnp RCSB], [https://www.ebi.ac.uk/pdbsum/8dnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dnp ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/FRIH_HUMAN FRIH_HUMAN] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity). | [https://www.uniprot.org/uniprot/FRIH_HUMAN FRIH_HUMAN] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity). | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | We recently developed a "Build and Retrieve" cryo-electron microscopy (cryo-EM) methodology, which is capable of simultaneously producing near-atomic resolution cryo-EM maps for several individual proteins from a heterogeneous, multiprotein sample. Here we report the use of "Build and Retrieve" to define the composition of a raw human brain microsomal lysate. From this sample, we simultaneously identify and solve cryo-EM structures of five different brain enzymes whose functions affect neurotransmitter recycling, iron metabolism, glycolysis, axonal development, energy homeostasis, and retinoic acid biosynthesis. Interestingly, malfunction of these important proteins has been directly linked to several neurodegenerative disorders, such as Alzheimer's, Huntington's, and Parkinson's diseases. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level. | ||
+ | |||
+ | A cryo-electron microscopic approach to elucidate protein structures from human brain microsomes.,Tringides ML, Zhang Z, Morgan CE, Su CC, Yu EW Life Sci Alliance. 2022 Nov 30;6(2):e202201724. doi: 10.26508/lsa.202201724. , Print 2023 Feb. PMID:36450447<ref>PMID:36450447</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 8dnp" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Ferritin 3D structures|Ferritin 3D structures]] | *[[Ferritin 3D structures|Ferritin 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Human Brain Ferritin Heavy Chain
|