8gms

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:35, 3 July 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[8gms]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8GMS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8GMS FirstGlance]. <br>
<table><tr><td colspan='2'>[[8gms]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8GMS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8GMS FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.31&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8gms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8gms OCA], [https://pdbe.org/8gms PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8gms RCSB], [https://www.ebi.ac.uk/pdbsum/8gms PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8gms ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8gms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8gms OCA], [https://pdbe.org/8gms PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8gms RCSB], [https://www.ebi.ac.uk/pdbsum/8gms PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8gms ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/A0A6S6LGG9_ECOLX A0A6S6LGG9_ECOLX] Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.[HAMAP-Rule:MF_00015]
+
[https://www.uniprot.org/uniprot/A0A485JBB4_ECOLX A0A485JBB4_ECOLX] Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage.[HAMAP-Rule:MF_00268]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
In response to DNA damage, bacterial RecA protein forms filaments with the assistance of DinI protein. The RecA filaments stimulate the autocleavage of LexA, the repressor of more than 50 SOS genes, and activate the SOS response. During the late phase of SOS response, the RecA filaments stimulate the autocleavage of UmuD and lambda repressor CI, leading to mutagenic repair and lytic cycle, respectively. Here, we determined the cryo-electron microscopy structures of Escherichia coli RecA filaments in complex with DinI, LexA, UmuD, and lambdaCI by helical reconstruction. The structures reveal that LexA and UmuD dimers bind in the filament groove and cleave in an intramolecular and an intermolecular manner, respectively, while lambdaCI binds deeply in the filament groove as a monomer. Despite their distinct folds and oligomeric states, all RecA filament binders recognize the same conserved protein features in the filament groove. The SOS response in bacteria can lead to mutagenesis and antimicrobial resistance, and our study paves the way for rational drug design targeting the bacterial SOS response.
 +
 
 +
Structural basis for regulation of SOS response in bacteria.,Gao B, Liang L, Su L, Wen A, Zhou C, Feng Y Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2217493120. doi: , 10.1073/pnas.2217493120. Epub 2023 Jan 4. PMID:36598938<ref>PMID:36598938</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 8gms" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[3D structures of recombinase A|3D structures of recombinase A]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Structure of LexA in complex with RecA filament

PDB ID 8gms

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools