7z11
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7z11]] is a 7 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z11 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z11 FirstGlance]. <br> | <table><tr><td colspan='2'>[[7z11]] is a 7 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z11 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z11 FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.2Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z11 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z11 OCA], [https://pdbe.org/7z11 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z11 RCSB], [https://www.ebi.ac.uk/pdbsum/7z11 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z11 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z11 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z11 OCA], [https://pdbe.org/7z11 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z11 RCSB], [https://www.ebi.ac.uk/pdbsum/7z11 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z11 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/AFG2_YEAST AFG2_YEAST] ATP-dependent chaperone which uses the energy provided by ATP hydrolysis to generate mechanical force to disassemble protein complexes (PubMed:12006565, PubMed:17646390, PubMed:23185031, PubMed:24371142). Plays an essential role in the cytoplasmic maturation steps of pre-60S ribosomal particles by promoting the release of shuttling protein RLP24 from the pre-ribosomal particles (PubMed:17646390, PubMed:23185031, PubMed:24371142). This step facilitates the subsequent release of other shuttling proteins such as NOG1 and allows the transition of the pre-ribosomal particles to later maturation forms that bind REI1 (PubMed:17646390, PubMed:23185031, PubMed:24371142). Essential for viability (PubMed:24371142, PubMed:8109176).<ref>PMID:12006565</ref> <ref>PMID:17646390</ref> <ref>PMID:23185031</ref> <ref>PMID:24371142</ref> <ref>PMID:8109176</ref> | |
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases. | The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases. | ||
- | Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1.,Prattes M, Grishkovskaya I, Hodirnau VV, Hetzmannseder C, Zisser G, Sailer C, Kargas V, Loibl M, Gerhalter M, Kofler L, Warren AJ, Stengel F, Haselbach D, Bergler H Nat Struct Mol Biol. 2022 Sep | + | Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1.,Prattes M, Grishkovskaya I, Hodirnau VV, Hetzmannseder C, Zisser G, Sailer C, Kargas V, Loibl M, Gerhalter M, Kofler L, Warren AJ, Stengel F, Haselbach D, Bergler H Nat Struct Mol Biol. 2022 Sep;29(9):942-953. doi: 10.1038/s41594-022-00832-5. , Epub 2022 Sep 12. PMID:36097293<ref>PMID:36097293</ref> |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Current revision
Structure of substrate bound DRG1 (AFG2)
|