7s10
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
<table><tr><td colspan='2'>[[7s10]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Glycine_max Glycine max]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7S10 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7S10 FirstGlance]. <br> | <table><tr><td colspan='2'>[[7s10]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Glycine_max Glycine max]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7S10 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7S10 FirstGlance]. <br> | ||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4000069Å</td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4000069Å</td></tr> | ||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7s10 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7s10 OCA], [https://pdbe.org/7s10 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7s10 RCSB], [https://www.ebi.ac.uk/pdbsum/7s10 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7s10 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7s10 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7s10 OCA], [https://pdbe.org/7s10 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7s10 RCSB], [https://www.ebi.ac.uk/pdbsum/7s10 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7s10 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 12: | Line 11: | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
- | Three well-characterized heme peroxidases (cytochrome c peroxidase = CCP, ascorbate peroxidase = APX, and Leishmania major peroxidase = LMP) all have a Trp residue tucked under the heme stacked against the proximal His heme ligand. The reaction of peroxidases with | + | Three well-characterized heme peroxidases (cytochrome c peroxidase = CCP, ascorbate peroxidase = APX, and Leishmania major peroxidase = LMP) all have a Trp residue tucked under the heme stacked against the proximal His heme ligand. The reaction of peroxidases with H(2)O(2) to give Compound I results in the oxidation of this Trp to a cationic radical in CCP and LMP but not in APX. Considerable experimental data indicate that the local electrostatic environment controls whether this Trp or the porphyrin is oxidized in Compound I. Attempts have been made to place the differences between these peroxidases on a quantitative basis using computational methods. These efforts have been somewhat limited by the approximations required owing to the computational cost of using fully solvated atomistic models with well-developed forcefields. This now has changed with available GPU computing power and the associated development of software. Here we employ thermodynamic integration and multistate Bennett acceptance ratio methods to help fine-tune our understanding on the energetic differences in Trp radical stabilization in all three peroxidases. These results indicate that the local solvent structure near the redox active Trp plays a significant role in stabilization of the cationic Trp radical. |
Computational analysis of the tryptophan cation radical energetics in peroxidase Compound I.,Poulos TL, Kim JS, Murarka VC J Biol Inorg Chem. 2022 Mar;27(2):229-237. doi: 10.1007/s00775-022-01925-8. Epub , 2022 Jan 21. PMID:35064363<ref>PMID:35064363</ref> | Computational analysis of the tryptophan cation radical energetics in peroxidase Compound I.,Poulos TL, Kim JS, Murarka VC J Biol Inorg Chem. 2022 Mar;27(2):229-237. doi: 10.1007/s00775-022-01925-8. Epub , 2022 Jan 21. PMID:35064363<ref>PMID:35064363</ref> | ||
Line 29: | Line 28: | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Kim J]] | [[Category: Kim J]] | ||
- | [[Category: Murarka | + | [[Category: Murarka VC]] |
[[Category: Poulos TL]] | [[Category: Poulos TL]] |
Current revision
Crystal Structure of ascorbate peroxidase triple mutant: S160M, L203M, Q204M
|