1ro7

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:25, 9 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ro/1ro7_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ro/1ro7_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ro7 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ro7 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Sialic acid terminates oligosaccharide chains on mammalian and microbial cell surfaces, playing critical roles in recognition and adherence. The enzymes that transfer the sialic acid moiety from cytidine-5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal positions of these key glycoconjugates are known as sialyltransferases. Despite their important biological roles, little is understood about the mechanism or molecular structure of these membrane-associated enzymes. We report the first structure of a sialyltransferase, that of CstII from Campylobacter jejuni, a highly prevalent foodborne pathogen. Our structural, mutagenesis and kinetic data provide support for a novel mode of substrate binding and glycosyl transfer mechanism, including essential roles of a histidine (general base) and two tyrosine residues (coordination of the phosphate leaving group). This work provides a framework for understanding the activity of several sialyltransferases, from bacterial to human, and for the structure-based design of specific inhibitors.
 +
 +
Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog.,Chiu CP, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG, Strynadka NC Nat Struct Mol Biol. 2004 Feb;11(2):163-70. Epub 2004 Jan 18. PMID:14730352<ref>PMID:14730352</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1ro7" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Sialyltransferase 3D structures|Sialyltransferase 3D structures]]
*[[Sialyltransferase 3D structures|Sialyltransferase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analogue, CMP-3FNeuAc.

PDB ID 1ro7

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools