|
|
Line 3: |
Line 3: |
| <SX load='6gov' size='340' side='right' viewer='molstar' caption='[[6gov]], [[Resolution|resolution]] 3.70Å' scene=''> | | <SX load='6gov' size='340' side='right' viewer='molstar' caption='[[6gov]], [[Resolution|resolution]] 3.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6gov]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/ ], [http://en.wikipedia.org/wiki/Bacteriophage_lambda Bacteriophage lambda] and [http://en.wikipedia.org/wiki/Eco57 Eco57]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GOV OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6GOV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6gov]] is a 11 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_O157:H7 Escherichia coli O157:H7], [https://en.wikipedia.org/wiki/Escherichia_virus_Lambda Escherichia virus Lambda] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GOV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6GOV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ms0|5ms0]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nusA, Z4530, ECs4050 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), nusB, Z0518, ECs0469 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), rpsJ, nusE, Z4692, ECs4186 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), nusG, Z5555, ECs4905 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), N, lambdap49 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10710 Bacteriophage lambda]), rpoA, Z4665, ECs4160 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), rpoZ, Z5075, ECs4524 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), rpoB, Z5560, ECs4910 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57]), rpoC, Z5561, ECs4911 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83334 ECO57])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6gov FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gov OCA], [https://pdbe.org/6gov PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6gov RCSB], [https://www.ebi.ac.uk/pdbsum/6gov PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6gov ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6gov FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6gov OCA], [http://pdbe.org/6gov PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6gov RCSB], [http://www.ebi.ac.uk/pdbsum/6gov PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6gov ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RPOA_ECO57 RPOA_ECO57]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. [[http://www.uniprot.org/uniprot/RS10_ECO57 RS10_ECO57]] Involved in the binding of tRNA to the ribosomes. [[http://www.uniprot.org/uniprot/RPOZ_ECO57 RPOZ_ECO57]] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits (By similarity). [[http://www.uniprot.org/uniprot/RPOC_ECO57 RPOC_ECO57]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. [[http://www.uniprot.org/uniprot/NUSB_ECO57 NUSB_ECO57]] Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons.[HAMAP-Rule:MF_00073] [[http://www.uniprot.org/uniprot/RPOB_ECO57 RPOB_ECO57]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. [[http://www.uniprot.org/uniprot/NUSA_ECO57 NUSA_ECO57]] Participates in both transcription termination and antitermination. [[http://www.uniprot.org/uniprot/NUSG_ECO57 NUSG_ECO57]] Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA transcriptional antitermination.[HAMAP-Rule:MF_00948] [[http://www.uniprot.org/uniprot/REGN_LAMBD REGN_LAMBD]] Antitermination proteins positively regulate expression of the phage early and late gene operons. Bacterial host RNA polymerase modified by these antitermination proteins transcribes through termination sites that otherwise prevent expression of the regulated genes. N protein regulates the transition from the early to the middle stage of lytic development. It is a transcription antitermination protein that prevents termination at the rho-dependent tL and tR transcription termination sites. | + | [https://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 26: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Bacteriophage lambda]] | + | [[Category: Escherichia coli O157:H7]] |
- | [[Category: DNA-directed RNA polymerase]]
| + | [[Category: Escherichia virus Lambda]] |
- | [[Category: Eco57]] | + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Buerger, J]] | + | [[Category: Synthetic construct]] |
- | [[Category: Huang, Y]] | + | [[Category: Buerger J]] |
- | [[Category: Krupp, F]] | + | [[Category: Huang Y]] |
- | [[Category: Loll, B]] | + | [[Category: Krupp F]] |
- | [[Category: Mielke, T]] | + | [[Category: Loll B]] |
- | [[Category: Said, N]] | + | [[Category: Mielke T]] |
- | [[Category: Spahn, C M.T]] | + | [[Category: Said N]] |
- | [[Category: Wahl, M C]] | + | [[Category: Spahn CMT]] |
- | [[Category: Antitermination]]
| + | [[Category: Wahl MC]] |
- | [[Category: Bacterial transcription]]
| + | |
- | [[Category: Dna-dependent rna polymerase]]
| + | |
- | [[Category: Ternary elongation complex]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription-dna-rna complex]]
| + | |
- | [[Category: Transcription/dna/rna]]
| + | |
| Structural highlights
Function
NUSA_ECOLI Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.[1] [2] [3] [4] [5] [6] [7] [8] [9]
Publication Abstract from PubMed
Bacteriophage lambdaN protein, a model anti-termination factor, binds nascent RNA and host Nus factors, rendering RNA polymerase resistant to all pause and termination signals. A 3.7-A-resolution cryo-electron microscopy structure and structure-informed functional analyses reveal a multi-pronged strategy by which the intrinsically unstructured lambdaN directly modifies RNA polymerase interactions with the nucleic acids and subverts essential functions of NusA, NusE, and NusG to reprogram the transcriptional apparatus. lambdaN repositions NusA and remodels the beta subunit flap tip, which likely precludes folding of pause or termination RNA hairpins in the exit tunnel and disrupts termination-supporting interactions of the alpha subunit C-terminal domains. lambdaN invades and traverses the RNA polymerase hybrid cavity, likely stabilizing the hybrid and impeding pause- or termination-related conformational changes of polymerase. lambdaN also lines upstream DNA, seemingly reinforcing anti-backtracking and anti-swiveling by NusG. Moreover, lambdaN-repositioned NusA and NusE sequester the NusG C-terminal domain, counteracting rho-dependent termination. Other anti-terminators likely utilize similar mechanisms to enable processive transcription.
Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor.,Krupp F, Said N, Huang YH, Loll B, Burger J, Mielke T, Spahn CMT, Wahl MC Mol Cell. 2019 Feb 12. pii: S1097-2765(19)30036-X. doi:, 10.1016/j.molcel.2019.01.016. PMID:30795892[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Greenblatt J, Li J. Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell. 1981 May;24(2):421-8. PMID:6263495
- ↑ Greenblatt J, McLimont M, Hanly S. Termination of transcription by nusA gene protein of Escherichia coli. Nature. 1981 Jul 16;292(5820):215-20. PMID:6265785
- ↑ Schmidt MC, Chamberlin MJ. Amplification and isolation of Escherichia coli nusA protein and studies of its effects on in vitro RNA chain elongation. Biochemistry. 1984 Jan 17;23(2):197-203. PMID:6199039
- ↑ Schmidt MC, Chamberlin MJ. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J Mol Biol. 1987 Jun 20;195(4):809-18. PMID:2821282 doi:http://dx.doi.org/10.1016/0022-2836(87)90486-4
- ↑ Liu K, Hanna MM. NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol. 1995 Apr 7;247(4):547-58. PMID:7536848 doi:http://dx.doi.org/10.1006/jmbi.1994.0161
- ↑ Vogel U, Jensen KF. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem. 1997 May 9;272(19):12265-71. PMID:9139668
- ↑ Gusarov I, Nudler E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell. 2001 Nov 16;107(4):437-49. PMID:11719185
- ↑ Cohen SE, Lewis CA, Mooney RA, Kohanski MA, Collins JJ, Landick R, Walker GC. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15517-22. doi:, 10.1073/pnas.1005203107. Epub 2010 Aug 9. PMID:20696893 doi:http://dx.doi.org/10.1073/pnas.1005203107
- ↑ Burmann BM, Rosch P. The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism. Transcription. 2011 May;2(3):130-134. PMID:21922055 doi:http://dx.doi.org/10.4161/trns.2.3.15671
- ↑ Krupp F, Said N, Huang YH, Loll B, Burger J, Mielke T, Spahn CMT, Wahl MC. Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor. Mol Cell. 2019 Feb 12. pii: S1097-2765(19)30036-X. doi:, 10.1016/j.molcel.2019.01.016. PMID:30795892 doi:http://dx.doi.org/10.1016/j.molcel.2019.01.016
|