6vpm
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6vpm' size='340' side='right'caption='[[6vpm]], [[Resolution|resolution]] 1.58Å' scene=''> | <StructureSection load='6vpm' size='340' side='right'caption='[[6vpm]], [[Resolution|resolution]] 1.58Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VPM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6VPM FirstGlance]. <br> |
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.58Å</td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.58Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MLA:MALONIC+ACID'>MLA</scene>, <scene name='pdbligand=R74:N~2~-[(2H-1,3-benzodioxol-5-yl)acetyl]-N-[(pyridin-4-yl)methyl]-L-cysteinamide'>R74</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr> | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MLA:MALONIC+ACID'>MLA</scene>, <scene name='pdbligand=R74:N~2~-[(2H-1,3-benzodioxol-5-yl)acetyl]-N-[(pyridin-4-yl)methyl]-L-cysteinamide'>R74</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6vpm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vpm OCA], [https://pdbe.org/6vpm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6vpm RCSB], [https://www.ebi.ac.uk/pdbsum/6vpm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6vpm ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6vpm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vpm OCA], [https://pdbe.org/6vpm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6vpm RCSB], [https://www.ebi.ac.uk/pdbsum/6vpm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6vpm ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == | + | <div style="background-color:#fffaf0;"> |
- | + | == Publication Abstract from PubMed == | |
+ | Cell cycle-dependent redox changes can mediate transient covalent modifications of cysteine thiols to modulate the activities of regulatory kinases and phosphatases. Our previously reported finding that protein cysteine oxidation is increased during mitosis relative to other cell cycle phases suggests that redox modifications could play prominent roles in regulating mitotic processes. The Aurora family of kinases and their downstream targets are key components of the cellular machinery that ensures the proper execution of mitosis and the accurate segregation of chromosomes to daughter cells. In this study, x-ray crystal structures of the Aurora A kinase domain delineate redox-sensitive cysteine residues that, upon covalent modification, can allosterically regulate kinase activity and oligomerization state. We showed in both Xenopus laevis egg extracts and mammalian cells that a conserved cysteine residue within the Aurora A activation loop is crucial for Aurora A activation by autophosphorylation. We further showed that covalent disulfide adducts of this residue promote autophosphorylation of the Aurora A kinase domain. These findings reveal a potential mechanistic link between Aurora A activation and changes in the intracellular redox state during mitosis and provide insights into how novel small-molecule inhibitors may be developed to target specific subpopulations of Aurora A. | ||
+ | |||
+ | Redox priming promotes Aurora A activation during mitosis.,Lim DC, Joukov V, Rettenmaier TJ, Kumagai A, Dunphy WG, Wells JA, Yaffe MB Sci Signal. 2020 Jul 21;13(641). pii: 13/641/eabb6707. doi:, 10.1126/scisignal.abb6707. PMID:32694171<ref>PMID:32694171</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6vpm" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Lim DC]] | [[Category: Lim DC]] | ||
[[Category: Yaffe MB]] | [[Category: Yaffe MB]] |
Current revision
TPX2 residues 7-20 fused to Aurora A residues 116-389 with C290 disulfide bonded to compound 8-34, and in complex with AMP-PNP
|