7fic
From Proteopedia
(Difference between revisions)
| Line 8: | Line 8: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7fic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7fic OCA], [https://pdbe.org/7fic PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7fic RCSB], [https://www.ebi.ac.uk/pdbsum/7fic PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7fic ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7fic FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7fic OCA], [https://pdbe.org/7fic PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7fic RCSB], [https://www.ebi.ac.uk/pdbsum/7fic PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7fic ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| - | == Function == | ||
| - | [https://www.uniprot.org/uniprot/AURKA_HUMAN AURKA_HUMAN] Mitotic serine/threonine kinases that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2. Regulates KIF2A tubulin depolymerase activity. Required for normal axon formation. Plays a role in microtubule remodeling during neurite extension. Important for microtubule formation and/or stabilization. Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and stabilizing p53/TP53. Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity. Necessary for proper cilia disassembly prior to mitosis.<ref>PMID:9606188</ref> <ref>PMID:11039908</ref> <ref>PMID:11551964</ref> <ref>PMID:12390251</ref> <ref>PMID:13678582</ref> <ref>PMID:14523000</ref> <ref>PMID:15147269</ref> <ref>PMID:14990569</ref> <ref>PMID:15128871</ref> <ref>PMID:14702041</ref> <ref>PMID:15987997</ref> <ref>PMID:18056443</ref> <ref>PMID:17604723</ref> <ref>PMID:17360485</ref> <ref>PMID:18615013</ref> <ref>PMID:19812038</ref> <ref>PMID:19351716</ref> <ref>PMID:19668197</ref> <ref>PMID:19357306</ref> <ref>PMID:20643351</ref> <ref>PMID:17125279</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine. | The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine. | ||
| - | Reversible lysine-targeted probes reveal residence time-based kinase selectivity.,Yang T, Cuesta A, Wan X, Craven GB, Hirakawa B, Khamphavong P, May JR, Kath JC, Lapek JD Jr, Niessen S, Burlingame AL, Carelli JD, Taunton J Nat Chem Biol. 2022 | + | Reversible lysine-targeted probes reveal residence time-based kinase selectivity.,Yang T, Cuesta A, Wan X, Craven GB, Hirakawa B, Khamphavong P, May JR, Kath JC, Lapek JD Jr, Niessen S, Burlingame AL, Carelli JD, Taunton J Nat Chem Biol. 2022 Sep;18(9):934-941. doi: 10.1038/s41589-022-01019-1. Epub 2022 , May 19. PMID:35590003<ref>PMID:35590003</ref> |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
Current revision
Reversible lysine-targeted probes reveal residence time-based kinase selectivity in vivo
| |||||||||||
