4gil

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:32, 17 October 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/PSUG_ECOLI PSUG_ECOLI] Catalyzes the reversible cleavage of pseudouridine 5'-phosphate (PsiMP) to ribose 5-phosphate and uracil. Functions biologically in the cleavage direction, as part of a pseudouridine degradation pathway.[HAMAP-Rule:MF_01876]<ref>PMID:18591240</ref> <ref>PMID:23066817</ref>
[https://www.uniprot.org/uniprot/PSUG_ECOLI PSUG_ECOLI] Catalyzes the reversible cleavage of pseudouridine 5'-phosphate (PsiMP) to ribose 5-phosphate and uracil. Functions biologically in the cleavage direction, as part of a pseudouridine degradation pathway.[HAMAP-Rule:MF_01876]<ref>PMID:18591240</ref> <ref>PMID:23066817</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Pseudouridine (Psi), the most abundant modification in RNA, is synthesized in situ using Psi synthase. Recently, a pathway for the degradation of Psi was described [Preumont, A., Snoussi, K., Stroobant, V., Collet, J. F., and Van Schaftingen, E. (2008) J. Biol. Chem. 283, 25238-25246]. In this pathway, Psi is first converted to Psi 5'-monophosphate (PsiMP) by Psi kinase and then PsiMP is degraded by PsiMP glycosidase to uracil and ribose 5-phosphate. PsiMP glycosidase is the first example of a mechanistically characterized enzyme that cleaves a C-C glycosidic bond. Here we report X-ray crystal structures of Escherichia coli PsiMP glycosidase and a complex of the K166A mutant with PsiMP. We also report the structures of a ring-opened ribose 5-phosphate adduct and a ring-opened ribose PsiMP adduct. These structures provide four snapshots along the reaction coordinate. The structural studies suggested that the reaction utilizes a Lys166 adduct during catalysis. Biochemical and mass spectrometry data further confirmed the existence of a lysine adduct. We used site-directed mutagenesis combined with kinetic analysis to identify roles for specific active site residues. Together, these data suggest that PsiMP glycosidase catalyzes the cleavage of the C-C glycosidic bond through a novel ribose ring-opening mechanism.
 +
 +
Pseudouridine monophosphate glycosidase: a new glycosidase mechanism.,Huang S, Mahanta N, Begley TP, Ealick SE Biochemistry. 2012 Nov 13;51(45):9245-55. doi: 10.1021/bi3006829. Epub 2012 Oct, 30. PMID:23066817<ref>PMID:23066817</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4gil" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

Crystal Structure of Pseudouridine Monophosphate Glycosidase/Linear Pseudouridine 5'-Phosphate Adduct

PDB ID 4gil

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools