4ll1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:41, 17 October 2024) (edit) (undo)
 
Line 8: Line 8:
</table>
</table>
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/TXNIP_HUMAN TXNIP_HUMAN] May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability. Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm. Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest. Required for the maturation of natural killer cells. Acts as a suppressor of tumor cell growth. Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1).<ref>PMID:17603038</ref> <ref>PMID:12821938</ref> <ref>PMID:18541147</ref> <ref>PMID:21460850</ref>
+
[https://www.uniprot.org/uniprot/THIO_HUMAN THIO_HUMAN] Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity.<ref>PMID:2176490</ref> <ref>PMID:9108029</ref> <ref>PMID:11118054</ref> <ref>PMID:16408020</ref> <ref>PMID:17606900</ref> ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55).<ref>PMID:2176490</ref> <ref>PMID:9108029</ref> <ref>PMID:11118054</ref> <ref>PMID:16408020</ref> <ref>PMID:17606900</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.
 +
 
 +
The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein.,Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH Nat Commun. 2014 Jan 6;5:2958. doi: 10.1038/ncomms3958. PMID:24389582<ref>PMID:24389582</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4ll1" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

The structure of the TRX and TXNIP complex

PDB ID 4ll1

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools