|
|
Line 3: |
Line 3: |
| <StructureSection load='6egm' size='340' side='right'caption='[[6egm]], [[Resolution|resolution]] 1.84Å' scene=''> | | <StructureSection load='6egm' size='340' side='right'caption='[[6egm]], [[Resolution|resolution]] 1.84Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6egm]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EGM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EGM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6egm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EGM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6EGM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.84Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DLE:D-LEUCINE'>DLE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DLE:D-LEUCINE'>DLE</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6egm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6egm OCA], [http://pdbe.org/6egm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6egm RCSB], [http://www.ebi.ac.uk/pdbsum/6egm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6egm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6egm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6egm OCA], [https://pdbe.org/6egm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6egm RCSB], [https://www.ebi.ac.uk/pdbsum/6egm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6egm ProSAT]</span></td></tr> |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 22: |
Line 22: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Pecoraro, V L]] | + | [[Category: Synthetic construct]] |
- | [[Category: Ruckthong, L]] | + | [[Category: Pecoraro VL]] |
- | [[Category: Stuckey, J A]] | + | [[Category: Ruckthong L]] |
- | [[Category: D-amino acid]] | + | [[Category: Stuckey JA]] |
- | [[Category: D-leu]]
| + | |
- | [[Category: De novo protein]]
| + | |
- | [[Category: Engineered protein]]
| + | |
- | [[Category: Metalloprotein]]
| + | |
- | [[Category: Three-stranded coiled coil peptide]]
| + | |
| Structural highlights
Publication Abstract from PubMed
A challenging objective of De Novo metalloprotein design is to control of the second coordination sphere of an active site to fine tune metal properties.The well-defined three stranded coiled coils, TRI and CoilSer peptides, are used to address this question.Substitution of Cys for Leu yields a thiophilic site within the core. Metals such as Hg(II), Pb(II) and As(III) result in trigonal planar or trigonal pyramidal geometries; however, spectroscopic studies showed Cd(II) formed 3-, 4- or 5-coordinate Cd(II)S(3)(OH(2))x (where x=0-2) when the second coordination sphere was perturbed.Unfortunately, there has been little crystallographic examination of these proteins to explain the observations.Herein,we compare the high-resolution x-ray structures of apo- and mercurated proteins to explain the modifications that lead to metal coordination number and geometry variation.It reveals that Ala substitution for Leu opens a cavity above the Cys site allowing for water excess, facilitating Cd(II)S(3)(OH(2)).Replacement of Cys by Pen restricts thiol rotation, causing a shift in the metal binding plane that displaces water, forming Cd(II)S(3).D-Leu, above the Cys site, reorients the side chain towards the Cys layer diminishing the space for water accommodation yielding Cd(II)S(3), while D-Leu below opens more space, allowing for equal Cd(II)S(3)(OH(2)) and Cd(II)S(3)(OH(2))(2).These studies provide insights on how to control desired metal geometries in metalloproteins using coded and non-coded amino acids.
How Second Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation.,Pecoraro VL, Ruckthong L, Stuckey JA Chemistry. 2019 Mar 12. doi: 10.1002/chem.201806040. PMID:30861211[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Pecoraro VL, Ruckthong L, Stuckey JA. How Second Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation. Chemistry. 2019 Mar 12. doi: 10.1002/chem.201806040. PMID:30861211 doi:http://dx.doi.org/10.1002/chem.201806040
|