7drc
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7drc]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Nicotiana_benthamiana Nicotiana benthamiana] and [https://en.wikipedia.org/wiki/Phytophthora_sojae Phytophthora sojae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7DRC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7DRC FirstGlance]. <br> | <table><tr><td colspan='2'>[[7drc]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Nicotiana_benthamiana Nicotiana benthamiana] and [https://en.wikipedia.org/wiki/Phytophthora_sojae Phytophthora sojae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7DRC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7DRC FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.92Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7drc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7drc OCA], [https://pdbe.org/7drc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7drc RCSB], [https://www.ebi.ac.uk/pdbsum/7drc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7drc ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7drc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7drc OCA], [https://pdbe.org/7drc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7drc RCSB], [https://www.ebi.ac.uk/pdbsum/7drc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7drc ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Function == | ||
- | [https://www.uniprot.org/uniprot/Q30BZ2_PHYSO Q30BZ2_PHYSO] | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response(1-6). Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity(1-3). Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity. | Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response(1-6). Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity(1-3). Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity. | ||
- | Plant receptor-like protein activation by a microbial glycoside hydrolase.,Sun Y, Wang Y, Zhang X, Chen Z, Xia Y, Wang L, Sun Y, Zhang M, Xiao Y, Han Z, Wang Y, Chai J Nature. 2022 Oct;610(7931):335-342. doi: 10.1038/s41586-022-05214-x. Epub 2022, Sep 21. PMID:36131021<ref>PMID:36131021</ref> | + | Plant receptor-like protein activation by a microbial glycoside hydrolase.,Sun Y, Wang Y, Zhang X, Chen Z, Xia Y, Wang L, Sun Y, Zhang M, Xiao Y, Han Z, Wang Y, Chai J Nature. 2022 Oct;610(7931):335-342. doi: 10.1038/s41586-022-05214-x. Epub 2022 , Sep 21. PMID:36131021<ref>PMID:36131021</ref> |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Current revision
Cryo-EM structure of plant receptor like protein RXEG1 in complex with xyloglucanase XEG1 and BAK1
|
Categories: Large Structures | Nicotiana benthamiana | Phytophthora sojae | Chai JJ | Chen ZD | Han ZF | Sun Y | Sun YJ | Wang Y | Wang YC | Xia YQ | Xiao Y | Zhang MM | Zhang XX