|  | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7snq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7snq OCA], [https://pdbe.org/7snq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7snq RCSB], [https://www.ebi.ac.uk/pdbsum/7snq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7snq ProSAT]</span></td></tr> |  | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7snq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7snq OCA], [https://pdbe.org/7snq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7snq RCSB], [https://www.ebi.ac.uk/pdbsum/7snq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7snq ProSAT]</span></td></tr> | 
| - | [https://www.uniprot.org/uniprot/POL_HV1B1 POL_HV1B1] Gag-Pol polyprotein and Gag polyprotein may regulate their own translation,by the binding genomic RNA in the 5'-UTR.At lowconcentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity).<ref>PMID:9658129</ref>   Matrix protein p17 has two main functions: in infected cell,it targets Gag andGag-pol polyproteins to the plasma membrane via a multipartite membrane-bindingsignal, that includes its myristoylated N-terminus. The second function is toplay a role in nuclear localization of the viral genome at the very start of cell infection.Matrix protein isthe part of the pre-integration complex. It binds in the cytoplasm the human BAF protein whichprevent autointegration ofthe viral genome, and might be included in virions at the ration of zero to3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of aportion ofMA molecules on the C-terminal tyrosine at the time of virus maturation,by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediatedby Vpu (By similarity).<ref>PMID:9658129</ref>   Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core isconstituted by capsid protein hexamer subunits. Thecore is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity inhuman cells. This capsid restriction by TRIM5 is one of thefactors which restricts HIV-1to thehuman species (By similarity).<ref>PMID:9658129</ref>   Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity).<ref>PMID:9658129</ref>   The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after therelease of the virion fromthe plasma membrane.Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virusparticles (By similarity).<ref>PMID:9658129</ref>   Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, anda ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode.Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA.RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H,resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical Rregion situated at the 3' end of viral RNA. This template exchange,known as minus-strand DNA strong stop transfer,can be either intra- or intermolecular.RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs)situated at the 5'-end and near the center of the genome.It is not clear if both polymerase and RNase H activities are simultaneous.RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity).<ref>PMID:9658129</ref>  Integrase catalyzes viral DNA integration into the host chromosome,by performing aseries of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of theRNA genome in dsDNA.The first step in the integration process is 3' processing.This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end ofthe viral DNA, leaving recessed CA OH's at the 3' ends.In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).<ref>PMID:9658129</ref>
 | + | == Publication Abstract from PubMed == | 
|  | + | Cellular proteins CPSF6, NUP153 and SEC24C play crucial roles in HIV-1 infection. While weak interactions of short phenylalanine-glycine (FG) containing peptides with isolated capsid hexamers have been characterized, how these cellular factors functionally engage with biologically relevant mature HIV-1 capsid lattices is unknown. Here we show that prion-like low complexity regions (LCRs) enable avid CPSF6, NUP153 and SEC24C binding to capsid lattices. Structural studies revealed that multivalent CPSF6 assembly is mediated by LCR-LCR interactions, which are templated by binding of CPSF6 FG peptides to a subset of hydrophobic capsid pockets positioned along adjoining hexamers. In infected cells, avid CPSF6 LCR-mediated binding to HIV-1 cores is essential for functional virus-host interactions. The investigational drug lenacapavir accesses unoccupied hydrophobic pockets in the complex to potently impair HIV-1 inside the nucleus without displacing the tightly bound cellular cofactor from virus cores. These results establish previously undescribed mechanisms of virus-host interactions and antiviral action. | 
|  | + | Prion-like low complexity regions enable avid virus-host interactions during HIV-1 infection.,Wei G, Iqbal N, Courouble VV, Francis AC, Singh PK, Hudait A, Annamalai AS, Bester S, Huang SW, Shkriabai N, Briganti L, Haney R, KewalRamani VN, Voth GA, Engelman AN, Melikyan GB, Griffin PR, Asturias F, Kvaratskhelia M Nat Commun. 2022 Oct 6;13(1):5879. doi: 10.1038/s41467-022-33662-6. PMID:36202818<ref>PMID:36202818</ref> |