7uus

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:15, 17 October 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7uus]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UUS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UUS FirstGlance]. <br>
<table><tr><td colspan='2'>[[7uus]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UUS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UUS FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3NI:NICKEL+(III)+ION'>3NI</scene>, <scene name='pdbligand=DHI:D-HISTIDINE'>DHI</scene>, <scene name='pdbligand=F3S:FE3-S4+CLUSTER'>F3S</scene>, <scene name='pdbligand=FCO:CARBONMONOXIDE-(DICYANO)+IRON'>FCO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MQ9:MENAQUINONE-9'>MQ9</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 8&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3NI:NICKEL+(III)+ION'>3NI</scene>, <scene name='pdbligand=DHI:D-HISTIDINE'>DHI</scene>, <scene name='pdbligand=FCO:CARBONMONOXIDE-(DICYANO)+IRON'>FCO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MQ9:MENAQUINONE-9'>MQ9</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uus OCA], [https://pdbe.org/7uus PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uus RCSB], [https://www.ebi.ac.uk/pdbsum/7uus PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uus ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uus OCA], [https://pdbe.org/7uus PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uus RCSB], [https://www.ebi.ac.uk/pdbsum/7uus PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uus ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/A0QUM7_MYCS2 A0QUM7_MYCS2]
[https://www.uniprot.org/uniprot/A0QUM7_MYCS2 A0QUM7_MYCS2]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Diverse aerobic bacteria use atmospheric H(2) as an energy source for growth and survival(1). This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments(2,3). Atmospheric H(2) oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily(4,5). However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H(2) amid ambient levels of the catalytic poison O(2) and how the derived electrons are transferred to the respiratory chain(1). Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H(2) to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H(2) at the expense of O(2), and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H(2) oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 A from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H(2) oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H(2) in ambient air.
 +
 +
Structural basis for bacterial energy extraction from atmospheric hydrogen.,Grinter R, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje PR, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Schittenhelm RB, Vincent KA, Khalid S, Berggren G, Greening C Nature. 2023 Mar;615(7952):541-547. doi: 10.1038/s41586-023-05781-7. Epub 2023 , Mar 8. PMID:36890228<ref>PMID:36890228</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7uus" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

The CryoEM structure of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis - Full complex focused refinement of stalk

PDB ID 7uus

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools