8jiu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:45, 17 October 2024) (edit) (undo)
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8jiu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8jiu OCA], [https://pdbe.org/8jiu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8jiu RCSB], [https://www.ebi.ac.uk/pdbsum/8jiu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8jiu ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8jiu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8jiu OCA], [https://pdbe.org/8jiu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8jiu RCSB], [https://www.ebi.ac.uk/pdbsum/8jiu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8jiu ProSAT]</span></td></tr>
</table>
</table>
-
== Disease ==
+
<div style="background-color:#fffaf0;">
-
[https://www.uniprot.org/uniprot/GNAS2_HUMAN GNAS2_HUMAN] Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.
+
== Publication Abstract from PubMed ==
-
== Function ==
+
Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric G(s) protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.
-
[https://www.uniprot.org/uniprot/GNAS2_HUMAN GNAS2_HUMAN] Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).<ref>PMID:12391161</ref> <ref>PMID:17110384</ref> <ref>PMID:21488135</ref> <ref>PMID:26206488</ref> <ref>PMID:8702665</ref>
+
 
 +
Structural analysis of the dual agonism at GLP-1R and GCGR.,Li Y, Zhou Q, Dai A, Zhao F, Chang R, Ying T, Wu B, Yang D, Wang MW, Cong Z Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303696120. doi: , 10.1073/pnas.2303696120. Epub 2023 Aug 7. PMID:37549266<ref>PMID:37549266</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 8jiu" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==

Current revision

Cryo-EM structure of the GLP-1R/GCGR dual agonist SAR425899-bound human GCGR-Gs complex

PDB ID 8jiu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools