8qez

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:51, 17 October 2024) (edit) (undo)
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8qez FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8qez OCA], [https://pdbe.org/8qez PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8qez RCSB], [https://www.ebi.ac.uk/pdbsum/8qez PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8qez ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8qez FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8qez OCA], [https://pdbe.org/8qez PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8qez RCSB], [https://www.ebi.ac.uk/pdbsum/8qez PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8qez ProSAT]</span></td></tr>
</table>
</table>
-
== Function ==
 
-
[https://www.uniprot.org/uniprot/GRIA2_RAT GRIA2_RAT] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.<ref>PMID:9351977</ref> <ref>PMID:19265014</ref> <ref>PMID:21172611</ref> <ref>PMID:12501192</ref> <ref>PMID:12015593</ref> <ref>PMID:12872125</ref> <ref>PMID:12730367</ref> <ref>PMID:16192394</ref> <ref>PMID:15591246</ref> <ref>PMID:17018279</ref> <ref>PMID:16483599</ref> <ref>PMID:19946266</ref> <ref>PMID:21317873</ref> <ref>PMID:21846932</ref>
 
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 muM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.
The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 muM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.
-
Exploring thienothiadiazine dioxides as isosteric analogues of benzo- and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators.,Francotte P, Bay Y, Goffin E, Colson T, Lesenfants C, Dorosz J, Laulumaa S, Fraikin P, de Tullio P, Beaufour C, Botez I, Pickering DS, Frydenvang K, Danober L, Kristensen AS, Kastrup JS, Pirotte B Eur J Med Chem. 2023 Dec 9;264:116036. doi: 10.1016/j.ejmech.2023.116036. PMID:38101041<ref>PMID:38101041</ref>
+
Exploring thienothiadiazine dioxides as isosteric analogues of benzo- and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators.,Francotte P, Bay Y, Goffin E, Colson T, Lesenfants C, Dorosz J, Laulumaa S, Fraikin P, de Tullio P, Beaufour C, Botez I, Pickering DS, Frydenvang K, Danober L, Kristensen AS, Kastrup JS, Pirotte B Eur J Med Chem. 2024 Jan 15;264:116036. doi: 10.1016/j.ejmech.2023.116036. Epub , 2023 Dec 9. PMID:38101041<ref>PMID:38101041</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Crystal structure of the AMPA receptor GluA2-L504Y-N775S ligand binding domain in complex with L-glutamate and positive allosteric modulator BPAM395 at 1.55A resolution

PDB ID 8qez

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools