1ogo

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:32, 23 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/og/1ogo_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/og/1ogo_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ogo ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ogo ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Dextranase catalyzes the hydrolysis of the alpha-1,6-glycosidic linkage in dextran polymers. The structure of dextranase, Dex49A, from Penicillium minioluteum was solved in the apo-enzyme and product-bound forms. The main domain of the enzyme is a right-handed parallel beta helix, which is connected to a beta sandwich domain at the N terminus. In the structure of the product complex, isomaltose was found to bind in a crevice on the surface of the enzyme. The glycosidic oxygen of the glucose unit in subsite +1 forms a hydrogen bond to the suggested catalytic acid, Asp395. By NMR spectroscopy the reaction course was shown to occur with net inversion at the anomeric carbon, implying a single displacement mechanism. Both Asp376 and Asp396 are suitably positioned to activate the water molecule that performs the nucleophilic attack. A new clan that links glycoside hydrolase families 28 and 49 is suggested.
 +
 +
Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex.,Larsson AM, Andersson R, Stahlberg J, Kenne L, Jones TA Structure. 2003 Sep;11(9):1111-21. PMID:12962629<ref>PMID:12962629</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1ogo" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Dex49A from Penicillium minioluteum complex with isomaltose

PDB ID 1ogo

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools