|
|
Line 3: |
Line 3: |
| <SX load='6p4h' size='340' side='right' viewer='molstar' caption='[[6p4h]], [[Resolution|resolution]] 3.20Å' scene=''> | | <SX load='6p4h' size='340' side='right' viewer='molstar' caption='[[6p4h]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6p4h]] is a 36 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P4H OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6P4H FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6p4h]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Israeli_acute_paralysis_virus Israeli acute paralysis virus] and [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P4H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P4H FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6p4g|6p4g]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.2Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6p4h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p4h OCA], [http://pdbe.org/6p4h PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6p4h RCSB], [http://www.ebi.ac.uk/pdbsum/6p4h PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6p4h ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p4h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p4h OCA], [https://pdbe.org/6p4h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p4h RCSB], [https://www.ebi.ac.uk/pdbsum/6p4h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p4h ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/G1TWL4_RABIT G1TWL4_RABIT]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria. Acts as a PPP1R16B-dependent substrate of PPP1CA.[HAMAP-Rule:MF_03016] [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] | + | [https://www.uniprot.org/uniprot/RSSA_RABIT RSSA_RABIT] Required for the assembly and/or stability of the 40S ribosomal subunit (PubMed:23873042, PubMed:25601755). Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits (PubMed:23873042, PubMed:25601755). Also functions as a cell surface receptor for laminin (By similarity). Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways (By similarity). May play a role in cell fate determination and tissue morphogenesis (By similarity). Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria. Acts as a PPP1R16B-dependent substrate of PPP1CA (By similarity).[HAMAP-Rule:MF_03016]<ref>PMID:23873042</ref> <ref>PMID:25601755</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Receptor for activated protein kinase C 1|Receptor for activated protein kinase C 1]] | |
| *[[Ribosome 3D structures|Ribosome 3D structures]] | | *[[Ribosome 3D structures|Ribosome 3D structures]] |
| + | *[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
| + | [[Category: Israeli acute paralysis virus]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
- | [[Category: Acosta-Reyes, F J]] | + | [[Category: Acosta-Reyes FJ]] |
- | [[Category: Fernandez, I S]] | + | [[Category: Fernandez IS]] |
- | [[Category: Frank, J]] | + | [[Category: Frank J]] |
- | [[Category: Neupane, R]] | + | [[Category: Neupane R]] |
- | [[Category: Internal ribosome entry site]]
| + | |
- | [[Category: Ire]]
| + | |
- | [[Category: Israeli acute paralysis virus]]
| + | |
- | [[Category: Ribosome]]
| + | |
- | [[Category: Small ribosomal subunit]]
| + | |
| Structural highlights
Function
RSSA_RABIT Required for the assembly and/or stability of the 40S ribosomal subunit (PubMed:23873042, PubMed:25601755). Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits (PubMed:23873042, PubMed:25601755). Also functions as a cell surface receptor for laminin (By similarity). Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways (By similarity). May play a role in cell fate determination and tissue morphogenesis (By similarity). Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria. Acts as a PPP1R16B-dependent substrate of PPP1CA (By similarity).[HAMAP-Rule:MF_03016][1] [2]
Publication Abstract from PubMed
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs.,Acosta-Reyes F, Neupane R, Frank J, Fernandez IS EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lomakin IB, Steitz TA. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature. 2013 Jul 21. doi: 10.1038/nature12355. PMID:23873042 doi:10.1038/nature12355
- ↑ Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Mol Cell. 2015 Feb 5;57(3):422-432. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 , Jan 15. PMID:25601755 doi:http://dx.doi.org/10.1016/j.molcel.2014.12.016
- ↑ Acosta-Reyes F, Neupane R, Frank J, Fernandez IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474 doi:http://dx.doi.org/10.15252/embj.2019102226
|