|
|
Line 3: |
Line 3: |
| <StructureSection load='6w1i' size='340' side='right'caption='[[6w1i]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='6w1i' size='340' side='right'caption='[[6w1i]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6w1i]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacsu Bacsu]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6W1I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6W1I FirstGlance]. <br> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6W1I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6W1I FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G4P:GUANOSINE-5,3-TETRAPHOSPHATE'>G4P</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G4P:GUANOSINE-5,3-TETRAPHOSPHATE'>G4P</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1y0b|1y0b]], [[6d9q|6d9q]], [[6d9r|6d9r]], [[6d9s|6d9s]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">xpt, BSU22070 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=224308 BACSU])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Xanthine_phosphoribosyltransferase Xanthine phosphoribosyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.2.22 2.4.2.22] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6w1i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6w1i OCA], [https://pdbe.org/6w1i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6w1i RCSB], [https://www.ebi.ac.uk/pdbsum/6w1i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6w1i ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6w1i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6w1i OCA], [https://pdbe.org/6w1i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6w1i RCSB], [https://www.ebi.ac.uk/pdbsum/6w1i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6w1i ProSAT]</span></td></tr> |
| </table> | | </table> |
- | == Function == | |
- | [[https://www.uniprot.org/uniprot/XPT_BACSU XPT_BACSU]] Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so that it can be reused for RNA or DNA synthesis.[HAMAP-Rule:MF_01184] | |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 29: |
Line 24: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacsu]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Xanthine phosphoribosyltransferase]]
| + | [[Category: Anderson BW]] |
- | [[Category: Anderson, B W]] | + | [[Category: Keck JL]] |
- | [[Category: Keck, J L]] | + | [[Category: Satyshur KA]] |
- | [[Category: Structural genomic]]
| + | |
- | [[Category: Satyshur, K A]] | + | |
- | [[Category: Gtp]]
| + | |
- | [[Category: Homeostasis]]
| + | |
- | [[Category: Mcsg]]
| + | |
- | [[Category: PSI, Protein structure initiative]]
| + | |
- | [[Category: Prpp]]
| + | |
- | [[Category: Purine]]
| + | |
- | [[Category: Salvage]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Xprt]]
| + | |
| Structural highlights
Publication Abstract from PubMed
The alarmones pppGpp and ppGpp mediate starvation response and maintain purine homeostasis to protect bacteria. In the bacterial phyla Firmicutes and Bacteroidetes, xanthine phosphoribosyltransferase (XPRT) is a purine salvage enzyme that produces the nucleotide XMP from PRPP and xanthine. Combining structural, biochemical, and genetic analyses, we show that pppGpp and ppGpp, as well as a third newly identified alarmone pGpp, all directly interact with XPRT from the Gram-positive bacterium Bacillus subtilis and inhibit XPRT activity by competing with its substrate PRPP. Structural analysis reveals that ppGpp binds the PRPP binding motif within the XPRT active site. This motif is present in another (p)ppGpp target, the purine salvage enzyme HPRT, suggesting evolutionary conservation in different enzymes. However, XPRT oligomeric interaction is distinct from HPRT in that XPRT forms a symmetric dimer with two (p)ppGpp binding sites at the dimer interface. (p)ppGpp's interaction with an XPRT bridging loop across the interface results in XPRT cooperatively binding (p)ppGpp. Also, XPRT displays differential regulation by the alarmones as it is potently inhibited by both ppGpp and pGpp, but only modestly by pppGpp. Lastly, we demonstrate that the alarmones are necessary for protecting GTP homeostasis against excess environmental xanthine in B. subtilis, suggesting that regulation of XPRT is key for regulating the purine salvage pathway.
Molecular Mechanism of Regulation of the Purine Salvage Enzyme XPRT by the Alarmones pppGpp, ppGpp, and pGpp.,Anderson BW, Hao A, Satyshur KA, Keck JL, Wang JD J Mol Biol. 2020 Jun 26;432(14):4108-4126. doi: 10.1016/j.jmb.2020.05.013. Epub, 2020 May 21. PMID:32446804[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Anderson BW, Hao A, Satyshur KA, Keck JL, Wang JD. Molecular Mechanism of Regulation of the Purine Salvage Enzyme XPRT by the Alarmones pppGpp, ppGpp, and pGpp. J Mol Biol. 2020 Jun 26;432(14):4108-4126. doi: 10.1016/j.jmb.2020.05.013. Epub, 2020 May 21. PMID:32446804 doi:http://dx.doi.org/10.1016/j.jmb.2020.05.013
|