6x16
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Inward-facing state of the glutamate transporter homologue GltPh in complex with TBOA== | ==Inward-facing state of the glutamate transporter homologue GltPh in complex with TBOA== | ||
- | <StructureSection load='6x16' size='340' side='right'caption='[[6x16]], [[Resolution|resolution]] 3. | + | <StructureSection load='6x16' size='340' side='right'caption='[[6x16]], [[Resolution|resolution]] 3.66Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6X16 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6X16 FirstGlance]. <br> |
- | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3. | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.66Å</td></tr> |
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6OU:[(2~{R})-1-[2-azanylethoxy(oxidanyl)phosphoryl]oxy-3-hexadecanoyloxy-propan-2-yl]+(~{Z})-octadec-9-enoate'>6OU</scene>, <scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=TB1:(3S)-3-(BENZYLOXY)-L-ASPARTIC+ACID'>TB1</scene></td></tr> | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6OU:[(2~{R})-1-[2-azanylethoxy(oxidanyl)phosphoryl]oxy-3-hexadecanoyloxy-propan-2-yl]+(~{Z})-octadec-9-enoate'>6OU</scene>, <scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=TB1:(3S)-3-(BENZYLOXY)-L-ASPARTIC+ACID'>TB1</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6x16 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6x16 OCA], [https://pdbe.org/6x16 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6x16 RCSB], [https://www.ebi.ac.uk/pdbsum/6x16 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6x16 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6x16 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6x16 OCA], [https://pdbe.org/6x16 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6x16 RCSB], [https://www.ebi.ac.uk/pdbsum/6x16 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6x16 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == | + | <div style="background-color:#fffaf0;"> |
- | + | == Publication Abstract from PubMed == | |
+ | Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homologue, sodium and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer. | ||
+ | |||
+ | Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters.,Wang X, Boudker O Elife. 2020 Nov 6;9. pii: 58417. doi: 10.7554/eLife.58417. PMID:33155546<ref>PMID:33155546</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6x16" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 15: | Line 22: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Pyrococcus horikoshii]] | ||
[[Category: Boudker O]] | [[Category: Boudker O]] | ||
[[Category: Wang X]] | [[Category: Wang X]] |
Current revision
Inward-facing state of the glutamate transporter homologue GltPh in complex with TBOA
|