7wz8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:43, 23 October 2024) (edit) (undo)
 
Line 11: Line 11:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/CLC4K_HUMAN CLC4K_HUMAN] Calcium-dependent lectin displaying mannose-binding specificity. Induces the formation of Birbeck granules (BGs); is a potent regulator of membrane superimposition and zippering. Binds to sulfated as well as mannosylated glycans, keratan sulfate (KS) and beta-glucans. Facilitates uptake of antigens and is involved in the routing and/or processing of antigen for presentation to T cells. Major receptor on primary Langerhans cells for Candida species, Saccharomyces species, and Malassezia furfur. Protects against human immunodeficiency virus-1 (HIV-1) infection. Binds to high-mannose structures present on the envelope glycoprotein which is followed by subsequent targeting of the virus to the Birbeck granules leading to its rapid degradation.<ref>PMID:10661407</ref> <ref>PMID:17334373</ref> <ref>PMID:20026605</ref> <ref>PMID:20097424</ref>
[https://www.uniprot.org/uniprot/CLC4K_HUMAN CLC4K_HUMAN] Calcium-dependent lectin displaying mannose-binding specificity. Induces the formation of Birbeck granules (BGs); is a potent regulator of membrane superimposition and zippering. Binds to sulfated as well as mannosylated glycans, keratan sulfate (KS) and beta-glucans. Facilitates uptake of antigens and is involved in the routing and/or processing of antigen for presentation to T cells. Major receptor on primary Langerhans cells for Candida species, Saccharomyces species, and Malassezia furfur. Protects against human immunodeficiency virus-1 (HIV-1) infection. Binds to high-mannose structures present on the envelope glycoprotein which is followed by subsequent targeting of the virus to the Birbeck granules leading to its rapid degradation.<ref>PMID:10661407</ref> <ref>PMID:17334373</ref> <ref>PMID:20026605</ref> <ref>PMID:20097424</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Langerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 A resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258-263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection.
 +
 +
Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation.,Oda T, Yanagisawa H, Shinmori H, Ogawa Y, Kawamura T Elife. 2022 Jun 27;11:e79990. doi: 10.7554/eLife.79990. PMID:35758632<ref>PMID:35758632</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7wz8" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Current revision

Structure of human langerin complex in Birbeck granules

PDB ID 7wz8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools