8e4r

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:04, 23 October 2024) (edit) (undo)
 
Line 14: Line 14:
We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (T(m)) of C145A mutant, unlike H41A, increases by 6.8 degrees C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [((-6))MPro(H41A) and ((-6*))MPro(H41A), respectively], and its corresponding mature MPro(H41A) were systematically examined. While the H41A mutation exerts negligible effect on T(m) and dimer dissociation constant (K(dimer)) of MPro(H41A), relative to the wild type MPro, both miniprecursors show a 4-5 degrees C decrease in T(m) and > 85-fold increase in K(dimer) as compared to MPro(H41A). The K(d) for the binding of the covalent inhibitor GC373 to ((-6*))MPro(H41A) increases approximately 12-fold, relative to MPro(H41A), concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.
We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (T(m)) of C145A mutant, unlike H41A, increases by 6.8 degrees C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [((-6))MPro(H41A) and ((-6*))MPro(H41A), respectively], and its corresponding mature MPro(H41A) were systematically examined. While the H41A mutation exerts negligible effect on T(m) and dimer dissociation constant (K(dimer)) of MPro(H41A), relative to the wild type MPro, both miniprecursors show a 4-5 degrees C decrease in T(m) and > 85-fold increase in K(dimer) as compared to MPro(H41A). The K(d) for the binding of the covalent inhibitor GC373 to ((-6*))MPro(H41A) increases approximately 12-fold, relative to MPro(H41A), concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.
-
Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor.,Kovalevsky A, Coates L, Kneller DW, Ghirlando R, Aniana A, Nashed NT, Louis JM J Mol Biol. 2022 Nov 2;434(24):167876. doi: 10.1016/j.jmb.2022.167876. PMID:36334779<ref>PMID:36334779</ref>
+
Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor.,Kovalevsky A, Coates L, Kneller DW, Ghirlando R, Aniana A, Nashed NT, Louis JM J Mol Biol. 2022 Dec 30;434(24):167876. doi: 10.1016/j.jmb.2022.167876. Epub 2022 , Nov 2. PMID:36334779<ref>PMID:36334779</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Room-temperature X-ray structure of SARS-CoV-2 main protease H41A miniprecursor mutant in complex with GC373

PDB ID 8e4r

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools