1ks4

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:55, 30 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ks/1ks4_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ks/1ks4_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ks4 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ks4 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The fungus Aspergillus niger is a main source of industrial cellulase. beta-1,4-Endoglucanase is the major component of cellulase from A. niger. In spite of widespread applications, little is known about the structure of this enzyme. Here, the structure of beta-1,4-endoglucanase from A. niger (EglA) was determined at 2.1 A resolution. Although there is a low sequence identity between EglA and CelB2, another member of family 12, the three-dimensional structures of their core regions are quite similar. The structural differences are mostly found in the loop regions, where CelB2 has an extra beta-sheet (beta-sheet C) at the non-reducing end of the binding cleft of the native enzyme. Incubation of EglA with PdCl(2) irreversibly inhibits the EglA activity. Structural studies of the enzyme-palladium complex show that three Pd(2+) ions bind to each EglA molecule. One of the Pd(2+) ions forms a coordinate covalent bond with Met118 S(delta) and the nucleophilic Glu116 O(epsilon1) at the active site of the enzyme. The other two Pd(2+) ions bind on the surface of the protein. Binding of Pd(2+) ions to EglA does not change the general conformation of the backbone of the protein significantly. Based on this structural study, one can conclude that the palladium ion directly binds to and blocks the active site of EglA and thus inactivates the enzyme.
 +
 +
Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride.,Khademi S, Zhang D, Swanson SM, Wartenberg A, Witte K, Meyer EF Acta Crystallogr D Biol Crystallogr. 2002 Apr;58(Pt 4):660-7. Epub 2002, Mar 22. PMID:11914491<ref>PMID:11914491</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1ks4" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Glucanase 3D structures|Glucanase 3D structures]]
*[[Glucanase 3D structures|Glucanase 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

The structure of Aspergillus niger endoglucanase-palladium complex

PDB ID 1ks4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools