Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
BACKGROUND: Diabodies are dimeric antibody fragments. In each polypeptide, a heavy-chain variable domain (VH) is linked to a light-chain variable domain (VL) but unlike single-chain Fv fragments, each antigen-binding site is formed by pairing of one VH and one VL domain from the two different polypeptides. Diabodies thus have two antigen-binding sites, and can be bispecific. Direct structural evidence is lacking for the connections and dimeric interactions between the two polypeptides of the diabody. RESULTS: The 2.6 A resolution structure has been determined for a bivalent diabody with a flexible five-residue polypeptide linker between the (amino-terminal) VH and (carboxy-terminal) VL domains. The asymmetric unit of the crystal consists of four polypeptides comprising two diabodies; for one of these polypeptides the linker can be traced between the VH and VL domains. Within each diabody the two associated VH and VL domains make back-to-back interactions through the VH domains, and there is an extensive VL-VL interface between the two diabodies in the asymmetric unit. CONCLUSIONS: The structure of the diabody is very similar to that which had been predicted by molecular modelling. Diabodies directed against cell-surface antigens should be capable of bringing together two cells, such as in cell-targeted therapy, because the two antigen-binding sites of the diabody are at opposite ends of the molecule and separated by approximately 65 A.
Crystal structure of a diabody, a bivalent antibody fragment.,Perisic O, Webb PA, Holliger P, Winter G, Williams RL Structure. 1994 Dec 15;2(12):1217-26. PMID:7704531[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Perisic O, Webb PA, Holliger P, Winter G, Williams RL. Crystal structure of a diabody, a bivalent antibody fragment. Structure. 1994 Dec 15;2(12):1217-26. PMID:7704531