1rzr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:21, 30 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rz/1rzr_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rz/1rzr_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rzr ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rzr ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Carbon catabolite repression (CCR) is one of the most fundamental environmental-sensing mechanisms in bacteria and imparts competitive advantage by establishing priorities in carbon metabolism. In gram-positive bacteria, the master transcription regulator of CCR is CcpA. CcpA is a LacI-GalR family member that employs, as an allosteric corepressor, the phosphoprotein HPr-Ser46-P, which is formed in glucose-replete conditions. Here we report structures of the Bacillus megaterium apoCcpA and a CcpA-(HPr-Ser46-P)-DNA complex. These structures reveal that HPr-Ser46-P mediates a novel two-component allosteric DNA binding activation mechanism that involves both rotation of the CcpA subdomains and relocation of pivot-point residue Thr61, which leads to juxtaposition of the DNA binding regions permitting "hinge" helix formation in the presence of cognate DNA. The structure of the CcpA-(HPr-Ser46-P)-cre complex also reveals the elegant mechanism by which CcpA family-specific interactions with HPr-Ser46-P residues Ser46-P and His15 partition the high-energy CCR and low-energy PTS pathways, the latter requiring HPr-His15-P.
 +
 +
Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P.,Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG Cell. 2004 Sep 17;118(6):731-41. PMID:15369672<ref>PMID:15369672</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1rzr" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Catabolite control protein 3D structures|Catabolite control protein 3D structures]]
*[[Catabolite control protein 3D structures|Catabolite control protein 3D structures]]
*[[Phosphocarrier protein HPr 3D structures|Phosphocarrier protein HPr 3D structures]]
*[[Phosphocarrier protein HPr 3D structures|Phosphocarrier protein HPr 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

crystal structure of transcriptional regulator-phosphoprotein-DNA complex

PDB ID 1rzr

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools