|
|
Line 3: |
Line 3: |
| <SX load='5v8l' size='340' side='right' viewer='molstar' caption='[[5v8l]], [[Resolution|resolution]] 4.30Å' scene=''> | | <SX load='5v8l' size='340' side='right' viewer='molstar' caption='[[5v8l]], [[Resolution|resolution]] 4.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5v8l]] is a 14 chain structure with sequence from [http://en.wikipedia.org/wiki/9hiv1 9hiv1] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V8L OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5V8L FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5v8l]] is a 14 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_immunodeficiency_virus_1 Human immunodeficiency virus 1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V8L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5V8L FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.3Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">env ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11676 9HIV1])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5v8l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v8l OCA], [http://pdbe.org/5v8l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5v8l RCSB], [http://www.ebi.ac.uk/pdbsum/5v8l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5v8l ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5v8l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v8l OCA], [https://pdbe.org/5v8l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5v8l RCSB], [https://www.ebi.ac.uk/pdbsum/5v8l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5v8l ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/Q2N0S6_9HIV1 Q2N0S6_9HIV1]] The envelope glyprotein gp160 precursor down-modulates cell surface CD4 antigen by interacting with it in the endoplasmic reticulum and blocking its transport to the cell surface (By similarity).[RuleBase:RU004292][SAAS:SAAS000328_004_020447] The gp120-gp41 heterodimer allows rapid transcytosis of the virus through CD4 negative cells such as simple epithelial monolayers of the intestinal, rectal and endocervical epithelial barriers. Both gp120 and gp41 specifically recognize glycosphingolipids galactosyl-ceramide (GalCer) or 3' sulfo-galactosyl-ceramide (GalS) present in the lipid rafts structures of epithelial cells. Binding to these alternative receptors allows the rapid transcytosis of the virus through the epithelial cells. This transcytotic vesicle-mediated transport of virions from the apical side to the basolateral side of the epithelial cells does not involve infection of the cells themselves (By similarity).[SAAS:SAAS000328_004_240990] | + | [https://www.uniprot.org/uniprot/Q2N0S6_9HIV1 Q2N0S6_9HIV1] The envelope glyprotein gp160 precursor down-modulates cell surface CD4 antigen by interacting with it in the endoplasmic reticulum and blocking its transport to the cell surface (By similarity).[RuleBase:RU004292][SAAS:SAAS000328_004_020447] The gp120-gp41 heterodimer allows rapid transcytosis of the virus through CD4 negative cells such as simple epithelial monolayers of the intestinal, rectal and endocervical epithelial barriers. Both gp120 and gp41 specifically recognize glycosphingolipids galactosyl-ceramide (GalCer) or 3' sulfo-galactosyl-ceramide (GalS) present in the lipid rafts structures of epithelial cells. Binding to these alternative receptors allows the rapid transcytosis of the virus through the epithelial cells. This transcytotic vesicle-mediated transport of virions from the apical side to the basolateral side of the epithelial cells does not involve infection of the cells themselves (By similarity).[SAAS:SAAS000328_004_240990] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 24: |
| *[[Gp120 3D structures|Gp120 3D structures]] | | *[[Gp120 3D structures|Gp120 3D structures]] |
| *[[Gp41 3D Structures|Gp41 3D Structures]] | | *[[Gp41 3D Structures|Gp41 3D Structures]] |
| + | *[[3D structures of human antibody|3D structures of human antibody]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| + | [[Category: Human immunodeficiency virus 1]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lee, J H]] | + | [[Category: Lee JH]] |
- | [[Category: Ward, A B]] | + | [[Category: Ward AB]] |
- | [[Category: Broadly neutralizing antibody]]
| + | |
- | [[Category: Hiv]]
| + | |
- | [[Category: Pgt145]]
| + | |
- | [[Category: Viral protein-immune system complex]]
| + | |
| Structural highlights
Function
Q2N0S6_9HIV1 The envelope glyprotein gp160 precursor down-modulates cell surface CD4 antigen by interacting with it in the endoplasmic reticulum and blocking its transport to the cell surface (By similarity).[RuleBase:RU004292][SAAS:SAAS000328_004_020447] The gp120-gp41 heterodimer allows rapid transcytosis of the virus through CD4 negative cells such as simple epithelial monolayers of the intestinal, rectal and endocervical epithelial barriers. Both gp120 and gp41 specifically recognize glycosphingolipids galactosyl-ceramide (GalCer) or 3' sulfo-galactosyl-ceramide (GalS) present in the lipid rafts structures of epithelial cells. Binding to these alternative receptors allows the rapid transcytosis of the virus through the epithelial cells. This transcytotic vesicle-mediated transport of virions from the apical side to the basolateral side of the epithelial cells does not involve infection of the cells themselves (By similarity).[SAAS:SAAS000328_004_240990]
Publication Abstract from PubMed
Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo-electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3-fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer-specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans.
A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic beta-Hairpin Structure.,Lee JH, Andrabi R, Su CY, Yasmeen A, Julien JP, Kong L, Wu NC, McBride R, Sok D, Pauthner M, Cottrell CA, Nieusma T, Blattner C, Paulson JC, Klasse PJ, Wilson IA, Burton DR, Ward AB Immunity. 2017 Apr 18;46(4):690-702. doi: 10.1016/j.immuni.2017.03.017. PMID:28423342[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lee JH, Andrabi R, Su CY, Yasmeen A, Julien JP, Kong L, Wu NC, McBride R, Sok D, Pauthner M, Cottrell CA, Nieusma T, Blattner C, Paulson JC, Klasse PJ, Wilson IA, Burton DR, Ward AB. A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic beta-Hairpin Structure. Immunity. 2017 Apr 18;46(4):690-702. doi: 10.1016/j.immuni.2017.03.017. PMID:28423342 doi:http://dx.doi.org/10.1016/j.immuni.2017.03.017
|