|
|
Line 3: |
Line 3: |
| <SX load='6o9z' size='340' side='right' viewer='molstar' caption='[[6o9z]], [[Resolution|resolution]] 3.03Å' scene=''> | | <SX load='6o9z' size='340' side='right' viewer='molstar' caption='[[6o9z]], [[Resolution|resolution]] 3.03Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6o9z]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O9Z OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6O9Z FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6o9z]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O9Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6O9Z FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.03Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EIF2B5, EIF2BE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EIF2B2, EIF2BB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EIF2B4, EIF2BD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EIF2B1, EIF2BA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EIF2B3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EIF2S1, EIF2A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6o9z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6o9z OCA], [http://pdbe.org/6o9z PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6o9z RCSB], [http://www.ebi.ac.uk/pdbsum/6o9z PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6o9z ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6o9z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6o9z OCA], [https://pdbe.org/6o9z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6o9z RCSB], [https://www.ebi.ac.uk/pdbsum/6o9z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6o9z ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/EI2BA_HUMAN EI2BA_HUMAN]] Cree leukoencephalopathy;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/EI2BE_HUMAN EI2BE_HUMAN]] Defects in EIF2B5 are a cause of leukodystrophy with vanishing white matter (VWM) [MIM:[http://omim.org/entry/603896 603896]]. VWM is a leukodystrophy that occurs mainly in children. Neurological signs include progressive cerebellar ataxia, spasticity, inconstant optic atrophy and relatively preserved mental abilities. The disease is chronic-progressive with, in most individuals, additional episodes of rapid deterioration following febrile infections or minor head trauma. While childhood onset is the most common form of the disorder, some severe forms are apparent at birth. A severe, early-onset form seen among the Cree and Chippewayan populations of Quebec and Manitoba is called Cree leukoencephalopathy. Milder forms may not become evident until adolescence or adulthood. Some females with milder forms of the disease who survive to adolescence exhibit ovarian dysfunction. This variant of the disorder is called ovarioleukodystrophy.<ref>PMID:11704758</ref> <ref>PMID:12325082</ref> <ref>PMID:12707859</ref> <ref>PMID:15776425</ref> <ref>PMID:19158808</ref> <ref>PMID:21484434</ref> [[http://www.uniprot.org/uniprot/EI2BD_HUMAN EI2BD_HUMAN]] Juvenile or adult CACH syndrome;Congenital or early infantile CACH syndrome;Cree leukoencephalopathy;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/EI2BB_HUMAN EI2BB_HUMAN]] Cree leukoencephalopathy;Juvenile or adult CACH syndrome;Congenital or early infantile CACH syndrome;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/EI2BG_HUMAN EI2BG_HUMAN]] Juvenile or adult CACH syndrome;Congenital or early infantile CACH syndrome;Cree leukoencephalopathy;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. | + | [https://www.uniprot.org/uniprot/EI2BD_HUMAN EI2BD_HUMAN] Juvenile or adult CACH syndrome;Congenital or early infantile CACH syndrome;Cree leukoencephalopathy;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/IF2A_HUMAN IF2A_HUMAN]] Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S preinitiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must exchange with GTP by way of a reaction catalyzed by eIF-2B. [[http://www.uniprot.org/uniprot/EI2BA_HUMAN EI2BA_HUMAN]] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. [[http://www.uniprot.org/uniprot/EI2BE_HUMAN EI2BE_HUMAN]] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. [[http://www.uniprot.org/uniprot/EI2BD_HUMAN EI2BD_HUMAN]] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. [[http://www.uniprot.org/uniprot/EI2BB_HUMAN EI2BB_HUMAN]] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. [[http://www.uniprot.org/uniprot/EI2BG_HUMAN EI2BG_HUMAN]] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. | + | [https://www.uniprot.org/uniprot/EI2BD_HUMAN EI2BD_HUMAN] Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 28: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Frost, A S]] | + | [[Category: Frost AS]] |
- | [[Category: Kenner, L R]] | + | [[Category: Kenner LR]] |
- | [[Category: Nguyen, H C]] | + | [[Category: Nguyen HC]] |
- | [[Category: Eukaryotic translation initiation factor 2]]
| + | |
- | [[Category: Eukaryotic translation initiation factor 2b]]
| + | |
- | [[Category: Translation]]
| + | |
| Structural highlights
Disease
EI2BD_HUMAN Juvenile or adult CACH syndrome;Congenital or early infantile CACH syndrome;Cree leukoencephalopathy;Late infantile CACH syndrome;Ovarioleukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.
Function
EI2BD_HUMAN Catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP.
Publication Abstract from PubMed
The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo-electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2alpha, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.
eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response.,Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, Tsai JC, Miller-Vedam LE, Walter P, Frost A Science. 2019 May 3;364(6439):491-495. doi: 10.1126/science.aaw2922. PMID:31048491[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, Tsai JC, Miller-Vedam LE, Walter P, Frost A. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science. 2019 May 3;364(6439):491-495. doi: 10.1126/science.aaw2922. PMID:31048491 doi:http://dx.doi.org/10.1126/science.aaw2922
|