| Structural highlights
Function
AMPN_PIG Broad specificity aminopeptidase. Plays a role in the final digestion of peptides generated from hydrolysis of proteins by gastric and pancreatic proteases. May be involved in the metabolism of regulatory peptides of diverse cell types, responsible for the processing of peptide hormones, such as angiotensin III and IV, neuropeptides, and chemokines and involved the cleavage of peptides bound to major histocompatibility complex class II molecules of antigen presenting cells. May have a role in angiogenesis (By similarity). It is able to degrade Leu-enkephalin and Met-enkephalin but not cholecystokinin CCK8, neuromedin C (GRP-10), somatostatin-14, substance P and vasoactive intestinal peptide. In case of porcine transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCoV) infections, serves as a receptor for TGEV and PRCoV spike glycoprotein in a species-specific manner.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Porcine deltacoronavirus (PDCoV) can experimentally infect a variety of animals. Human infection by PDCoV has also been reported. Consistently, PDCoV can use aminopeptidase N (APN) from different host species as receptors to enter cells. To understand this broad receptor usage and interspecies transmission of PDCoV, we determined the crystal structures of the receptor binding domain (RBD) of PDCoV spike protein bound to human APN (hAPN) and porcine APN (pAPN), respectively. The structures of the two complexes exhibit high similarity. PDCoV RBD binds to common regions on hAPN and pAPN, which are different from the sites engaged by two alphacoronaviruses: HCoV-229E and porcine respiratory coronavirus (PRCoV). Based on structure guided mutagenesis, we identified conserved residues on hAPN and pAPN that are essential for PDCoV binding and infection. We report the detailed mechanism for how a deltacoronavirus recognizes homologous receptors and provide insights into the cross-species transmission of PDCoV.
Structures of a deltacoronavirus spike protein bound to porcine and human receptors.,Ji W, Peng Q, Fang X, Li Z, Li Y, Xu C, Zhao S, Li J, Chen R, Mo G, Wei Z, Xu Y, Li B, Zhang S Nat Commun. 2022 Mar 18;13(1):1467. doi: 10.1038/s41467-022-29062-5. PMID:35304871[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Delmas B, Gelfi J, Kut E, Sjostrom H, Noren O, Laude H. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol. 1994 Aug;68(8):5216-24. PMID:7913510
- ↑ Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 1992 Jun 4;357(6377):417-20. PMID:1350661 doi:http://dx.doi.org/10.1038/357417a0
- ↑ Delmas B, Gelfi J, Sjostrom H, Noren O, Laude H. Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol. 1993;342:293-8. PMID:7911642
- ↑ Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B. Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol. 1997 Jan;71(1):734-7. PMID:8985407
- ↑ Hegyi A, Kolb AF. Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. J Gen Virol. 1998 Jun;79 ( Pt 6):1387-91. PMID:9634079
- ↑ Ji W, Peng Q, Fang X, Li Z, Li Y, Xu C, Zhao S, Li J, Chen R, Mo G, Wei Z, Xu Y, Li B, Zhang S. Structures of a deltacoronavirus spike protein bound to porcine and human receptors. Nat Commun. 2022 Mar 18;13(1):1467. doi: 10.1038/s41467-022-29062-5. PMID:35304871 doi:http://dx.doi.org/10.1038/s41467-022-29062-5
|