|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of the Mycobacterium tuberculosis H37Rv EsxOP complex (Rv2346c-Rv2347c)== | | ==Crystal structure of the Mycobacterium tuberculosis H37Rv EsxOP complex (Rv2346c-Rv2347c)== |
- | <StructureSection load='3ogi' size='340' side='right' caption='[[3ogi]], [[Resolution|resolution]] 2.55Å' scene=''> | + | <StructureSection load='3ogi' size='340' side='right'caption='[[3ogi]], [[Resolution|resolution]] 2.55Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ogi]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_tuberculosis"_(zopf_1883)_klein_1884 "bacillus tuberculosis" (zopf 1883) klein 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OGI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3OGI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ogi]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OGI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3OGI FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.549Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MT2411, MTCY98.15c, Rv2346c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1773 "Bacillus tuberculosis" (Zopf 1883) Klein 1884]), MT2412, MTCY98.16c, Rv2347c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1773 "Bacillus tuberculosis" (Zopf 1883) Klein 1884])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ogi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ogi OCA], [http://pdbe.org/3ogi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ogi RCSB], [http://www.ebi.ac.uk/pdbsum/3ogi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ogi ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ogi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ogi OCA], [https://pdbe.org/3ogi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ogi RCSB], [https://www.ebi.ac.uk/pdbsum/3ogi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ogi ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/ESXO_MYCTU ESXO_MYCTU] Plays an important role in mycobacterial pathogenesis in the context of innate immunity. Aids host cell invasion and intracellular bacillary persistence. Increases host oxidative stress response, leading to genomic instability and decrease in macrophage viability. Also induces autophagy and modulates the immune function of macrophages.<ref>PMID:26786654</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/og/3ogi_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/og/3ogi_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 31: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Ahn, C]] | + | [[Category: Large Structures]] |
- | [[Category: Arbing, M A]] | + | [[Category: Mycobacterium tuberculosis]] |
- | [[Category: Cascio, D]] | + | [[Category: Ahn C]] |
- | [[Category: Chan, S]] | + | [[Category: Arbing MA]] |
- | [[Category: Eisenberg, D]] | + | [[Category: Cascio D]] |
- | [[Category: Harris, L]] | + | [[Category: Chan S]] |
- | [[Category: ISFI, Integrated Center for Structure and Function Innovation]] | + | [[Category: Eisenberg D]] |
- | [[Category: Kuo, E]] | + | [[Category: Harris L]] |
- | [[Category: Sawaya, M R]] | + | [[Category: Kuo E]] |
- | [[Category: Structural genomic]] | + | [[Category: Sawaya MR]] |
- | [[Category: Zhou, T T]] | + | [[Category: Zhou TT]] |
- | [[Category: Integrated center for structure and function innovation]]
| + | |
- | [[Category: Isfi]]
| + | |
- | [[Category: PSI, Protein structure initiative]]
| + | |
- | [[Category: Secreted]]
| + | |
- | [[Category: Tbsgc]]
| + | |
- | [[Category: Unknown function]]
| + | |
- | [[Category: Wxg100]]
| + | |
| Structural highlights
Function
ESXO_MYCTU Plays an important role in mycobacterial pathogenesis in the context of innate immunity. Aids host cell invasion and intracellular bacillary persistence. Increases host oxidative stress response, leading to genomic instability and decrease in macrophage viability. Also induces autophagy and modulates the immune function of macrophages.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.
Heterologous expression of mycobacterial Esx complexes in Escherichia coli for structural studies is facilitated by the use of maltose binding protein fusions.,Arbing MA, Chan S, Harris L, Kuo E, Zhou TT, Ahn CJ, Nguyen L, He Q, Lu J, Menchavez PT, Shin A, Holton T, Sawaya MR, Cascio D, Eisenberg D PLoS One. 2013 Nov 29;8(11):e81753. doi: 10.1371/journal.pone.0081753., eCollection 2013. PMID:24312350[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Mohanty S, Dal Molin M, Ganguli G, Padhi A, Jena P, Selchow P, Sengupta S, Meuli M, Sander P, Sonawane A. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis (Edinb). 2016 Jan;96:44-57. doi: 10.1016/j.tube.2015.11.006. Epub, 2015 Nov 24. PMID:26786654 doi:http://dx.doi.org/10.1016/j.tube.2015.11.006
- ↑ Arbing MA, Chan S, Harris L, Kuo E, Zhou TT, Ahn CJ, Nguyen L, He Q, Lu J, Menchavez PT, Shin A, Holton T, Sawaya MR, Cascio D, Eisenberg D. Heterologous expression of mycobacterial Esx complexes in Escherichia coli for structural studies is facilitated by the use of maltose binding protein fusions. PLoS One. 2013 Nov 29;8(11):e81753. doi: 10.1371/journal.pone.0081753., eCollection 2013. PMID:24312350 doi:http://dx.doi.org/10.1371/journal.pone.0081753
|