5t4s

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:11, 6 November 2024) (edit) (undo)
 
Line 12: Line 12:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/RENI_HUMAN RENI_HUMAN] Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney.
[https://www.uniprot.org/uniprot/RENI_HUMAN RENI_HUMAN] Renin is a highly specific endopeptidase, whose only known function is to generate angiotensin I from angiotensinogen in the plasma, initiating a cascade of reactions that produce an elevation of blood pressure and increased sodium retention by the kidney.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
A novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3SP (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)). Prior to making chemical modifications to the hit fragment, we first identified its essential binding sites by utilizing the hit fragment's substructures. Second, we created a new and smaller scaffold, which better occupied the identified essential S3 and S3SP sites, by utilizing library synthesis with high-throughput chemistry. We then revisited the S1 site and efficiently explored a good building block attaching to the scaffold with library synthesis. In the library syntheses, the binding modes of each pivotal compound were determined and confirmed by X-ray crystallography and the library was strategically designed by structure-based computational approach not only to obtain a more active compound but also to obtain informative Structure Activity Relationship (SAR). As a result, we obtained a lead compound offering synthetic accessibility as well as the improved in vitro ADMET profiles. The fragments and compounds possessing a characteristic interaction pattern provided new structural insights into renin's active site and the potential to create a new generation of renin inhibitors. In addition, we demonstrated our FBDD strategy integrating highly sensitive biochemical assay, X-ray crystallography, and high-throughput synthesis and in silico library design aimed at fragment morphing at the initial stage was effective to elucidate a pocket profile and a promising lead compound.
 +
 +
Novel approach of fragment-based lead discovery applied to renin inhibitors.,Tawada M, Suzuki S, Imaeda Y, Oki H, Snell G, Behnke CA, Kondo M, Tarui N, Tanaka T, Kuroita T, Tomimoto M Bioorg Med Chem. 2016 Nov 15;24(22):6066-6074. doi: 10.1016/j.bmc.2016.09.065., Epub 2016 Sep 28. PMID:27720325<ref>PMID:27720325</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5t4s" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==

Current revision

Novel Approach of Fragment-Based Lead Discovery applied to Renin Inhibitors

PDB ID 5t4s

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools