6atz

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:26, 6 November 2024) (edit) (undo)
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6atz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6atz OCA], [https://pdbe.org/6atz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6atz RCSB], [https://www.ebi.ac.uk/pdbsum/6atz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6atz ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6atz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6atz OCA], [https://pdbe.org/6atz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6atz RCSB], [https://www.ebi.ac.uk/pdbsum/6atz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6atz ProSAT]</span></td></tr>
</table>
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/FIBB_HUMAN FIBB_HUMAN] Defects in FGB are a cause of congenital afibrinogenemia (CAFBN) [MIM:[https://omim.org/entry/202400 202400]. This rare autosomal recessive disorder is characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=Patients with congenital fibrinogen abnormalities can manifest different clinical pictures. Some cases are clinically silent, some show a tendency toward bleeding and some show a predisposition for thrombosis with or without bleeding.
== Function ==
== Function ==
-
[https://www.uniprot.org/uniprot/DRA_HUMAN DRA_HUMAN] Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class II molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface. In B-cells, the interaction between HLA-DM and MHC class II molecules is regulated by HLA-DO. Primary dendritic cells (DCs) also to express HLA-DO. Lysosomal miroenvironment has been implicated in the regulation of antigen loading into MHC II molecules, increased acidification produces increased proteolysis and efficient peptide loading.
+
[https://www.uniprot.org/uniprot/FIBB_HUMAN FIBB_HUMAN] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Current revision

HLA-DRB1*1402 in complex with citrullinated fibrinogen peptide

PDB ID 6atz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools