|
|
Line 3: |
Line 3: |
| <StructureSection load='6dfw' size='340' side='right'caption='[[6dfw]], [[Resolution|resolution]] 3.20Å' scene=''> | | <StructureSection load='6dfw' size='340' side='right'caption='[[6dfw]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6dfw]] is a 8 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DFW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DFW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6dfw]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DFW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DFW FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6dfv|6dfv]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dfw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dfw OCA], [http://pdbe.org/6dfw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dfw RCSB], [http://www.ebi.ac.uk/pdbsum/6dfw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dfw ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dfw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dfw OCA], [https://pdbe.org/6dfw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dfw RCSB], [https://www.ebi.ac.uk/pdbsum/6dfw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dfw ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/HA2D_MOUSE HA2D_MOUSE] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 16: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 6dfw" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6dfw" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[MHC 3D structures|MHC 3D structures]] |
| + | *[[MHC II 3D structures|MHC II 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 21: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dai, S]] | + | [[Category: Mus musculus]] |
- | [[Category: Wang, Y]] | + | [[Category: Dai S]] |
- | [[Category: Autoimmunity]] | + | [[Category: Wang Y]] |
- | [[Category: Immune system]]
| + | |
- | [[Category: T cell receptor]]
| + | |
- | [[Category: Type 1 diabetes]]
| + | |
| Structural highlights
Function
HA2D_MOUSE
Publication Abstract from PubMed
In type 1 diabetes (T1D), proinsulin is a major autoantigen and the insulin B:9-23 peptide contains epitopes for CD4(+) T cells in both mice and humans. This peptide requires carboxyl-terminal mutations for uniform binding in the proper position within the mouse IA(g7) or human DQ8 major histocompatibility complex (MHC) class II (MHCII) peptide grooves and for strong CD4(+) T cell stimulation. Here, we present crystal structures showing how these mutations control CD4(+) T cell receptor (TCR) binding to these MHCII-peptide complexes. Our data reveal stricking similarities between mouse and human CD4(+) TCRs in their interactions with these ligands. We also show how fusions between fragments of B:9-23 and of proinsulin C-peptide create chimeric peptides with activities as strong or stronger than the mutated insulin peptides. We propose transpeptidation in the lysosome as a mechanism that could accomplish these fusions in vivo, similar to the creation of fused peptide epitopes for MHCI presentation shown to occur by transpeptidation in the proteasome. Were this mechanism limited to the pancreas and absent in the thymus, it could provide an explanation for how diabetogenic T cells escape negative selection during development but find their modified target antigens in the pancreas to cause T1D.
How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes.,Wang Y, Sosinowski T, Novikov A, Crawford F, White J, Jin N, Liu Z, Zou J, Neau D, Davidson HW, Nakayama M, Kwok WW, Gapin L, Marrack P, Kappler JW, Dai S Sci Immunol. 2019 Apr 5;4(34). pii: 4/34/eaav7517. doi:, 10.1126/sciimmunol.aav7517. PMID:30952805[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang Y, Sosinowski T, Novikov A, Crawford F, White J, Jin N, Liu Z, Zou J, Neau D, Davidson HW, Nakayama M, Kwok WW, Gapin L, Marrack P, Kappler JW, Dai S. How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes. Sci Immunol. 2019 Apr 5;4(34). pii: 4/34/eaav7517. doi:, 10.1126/sciimmunol.aav7517. PMID:30952805 doi:http://dx.doi.org/10.1126/sciimmunol.aav7517
|